MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatfval Structured version   Visualization version   Unicode version

Theorem ccatfval 13358
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatfval  |-  ( ( S  e.  V  /\  T  e.  W )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
Distinct variable groups:    x, S    x, T
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem ccatfval
Dummy variables  t 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( S  e.  V  ->  S  e.  _V )
2 elex 3212 . 2  |-  ( T  e.  W  ->  T  e.  _V )
3 fveq2 6191 . . . . . 6  |-  ( s  =  S  ->  ( # `
 s )  =  ( # `  S
) )
4 fveq2 6191 . . . . . 6  |-  ( t  =  T  ->  ( # `
 t )  =  ( # `  T
) )
53, 4oveqan12d 6669 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( # `  s
)  +  ( # `  t ) )  =  ( ( # `  S
)  +  ( # `  T ) ) )
65oveq2d 6666 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  ( 0..^ ( (
# `  s )  +  ( # `  t
) ) )  =  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) ) )
73oveq2d 6666 . . . . . . 7  |-  ( s  =  S  ->  (
0..^ ( # `  s
) )  =  ( 0..^ ( # `  S
) ) )
87eleq2d 2687 . . . . . 6  |-  ( s  =  S  ->  (
x  e.  ( 0..^ ( # `  s
) )  <->  x  e.  ( 0..^ ( # `  S
) ) ) )
98adantr 481 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( x  e.  ( 0..^ ( # `  s
) )  <->  x  e.  ( 0..^ ( # `  S
) ) ) )
10 fveq1 6190 . . . . . 6  |-  ( s  =  S  ->  (
s `  x )  =  ( S `  x ) )
1110adantr 481 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s `  x
)  =  ( S `
 x ) )
12 simpr 477 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  t  =  T )
133oveq2d 6666 . . . . . . 7  |-  ( s  =  S  ->  (
x  -  ( # `  s ) )  =  ( x  -  ( # `
 S ) ) )
1413adantr 481 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( x  -  ( # `
 s ) )  =  ( x  -  ( # `  S ) ) )
1512, 14fveq12d 6197 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( t `  (
x  -  ( # `  s ) ) )  =  ( T `  ( x  -  ( # `
 S ) ) ) )
169, 11, 15ifbieq12d 4113 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `  x
) ,  ( t `
 ( x  -  ( # `  s ) ) ) )  =  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( S `  x
) ,  ( T `
 ( x  -  ( # `  S ) ) ) ) )
176, 16mpteq12dv 4733 . . 3  |-  ( ( s  =  S  /\  t  =  T )  ->  ( x  e.  ( 0..^ ( ( # `  s )  +  (
# `  t )
) )  |->  if ( x  e.  ( 0..^ ( # `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( # `
 s ) ) ) ) )  =  ( x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
18 df-concat 13301 . . 3  |- ++  =  ( s  e.  _V , 
t  e.  _V  |->  ( x  e.  ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `  x
) ,  ( t `
 ( x  -  ( # `  s ) ) ) ) ) )
19 ovex 6678 . . . 4  |-  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) )  e.  _V
2019mptex 6486 . . 3  |-  ( x  e.  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( S `  x
) ,  ( T `
 ( x  -  ( # `  S ) ) ) ) )  e.  _V
2117, 18, 20ovmpt2a 6791 . 2  |-  ( ( S  e.  _V  /\  T  e.  _V )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
221, 2, 21syl2an 494 1  |-  ( ( S  e.  V  /\  T  e.  W )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939    - cmin 10266  ..^cfzo 12465   #chash 13117   ++ cconcat 13293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-concat 13301
This theorem is referenced by:  ccatcl  13359  ccatlen  13360  ccatval1  13361  ccatval2  13362  ccatvalfn  13365  ccatalpha  13375  repswccat  13532  ccatco  13581  ofccat  13708  ccatmulgnn0dir  30619
  Copyright terms: Public domain W3C validator