Step | Hyp | Ref
| Expression |
1 | | ofccat.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ Word 𝑆) |
2 | | wrdf 13310 |
. . . . . . . . . . 11
⊢ (𝐸 ∈ Word 𝑆 → 𝐸:(0..^(#‘𝐸))⟶𝑆) |
3 | | ffn 6045 |
. . . . . . . . . . 11
⊢ (𝐸:(0..^(#‘𝐸))⟶𝑆 → 𝐸 Fn (0..^(#‘𝐸))) |
4 | 1, 2, 3 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 Fn (0..^(#‘𝐸))) |
5 | | ofccat.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ Word 𝑇) |
6 | | wrdf 13310 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Word 𝑇 → 𝐺:(0..^(#‘𝐺))⟶𝑇) |
7 | | ffn 6045 |
. . . . . . . . . . . 12
⊢ (𝐺:(0..^(#‘𝐺))⟶𝑇 → 𝐺 Fn (0..^(#‘𝐺))) |
8 | 5, 6, 7 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 Fn (0..^(#‘𝐺))) |
9 | | ofccat.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (#‘𝐸) = (#‘𝐺)) |
10 | 9 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0..^(#‘𝐸)) = (0..^(#‘𝐺))) |
11 | 10 | fneq2d 5982 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 Fn (0..^(#‘𝐸)) ↔ 𝐺 Fn (0..^(#‘𝐺)))) |
12 | 8, 11 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 Fn (0..^(#‘𝐸))) |
13 | | ovexd 6680 |
. . . . . . . . . 10
⊢ (𝜑 → (0..^(#‘𝐸)) ∈ V) |
14 | | inidm 3822 |
. . . . . . . . . 10
⊢
((0..^(#‘𝐸))
∩ (0..^(#‘𝐸))) =
(0..^(#‘𝐸)) |
15 | 4, 12, 13, 13, 14 | offn 6908 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ∘𝑓 𝑅𝐺) Fn (0..^(#‘𝐸))) |
16 | | hashfn 13164 |
. . . . . . . . 9
⊢ ((𝐸 ∘𝑓
𝑅𝐺) Fn (0..^(#‘𝐸)) → (#‘(𝐸 ∘𝑓 𝑅𝐺)) = (#‘(0..^(#‘𝐸)))) |
17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (#‘(𝐸 ∘𝑓
𝑅𝐺)) = (#‘(0..^(#‘𝐸)))) |
18 | | wrdfin 13323 |
. . . . . . . . . 10
⊢ (𝐸 ∈ Word 𝑆 → 𝐸 ∈ Fin) |
19 | | hashcl 13147 |
. . . . . . . . . 10
⊢ (𝐸 ∈ Fin →
(#‘𝐸) ∈
ℕ0) |
20 | 1, 18, 19 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (#‘𝐸) ∈
ℕ0) |
21 | | hashfzo0 13217 |
. . . . . . . . 9
⊢
((#‘𝐸) ∈
ℕ0 → (#‘(0..^(#‘𝐸))) = (#‘𝐸)) |
22 | 20, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(#‘(0..^(#‘𝐸)))
= (#‘𝐸)) |
23 | 17, 22 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → (#‘(𝐸 ∘𝑓
𝑅𝐺)) = (#‘𝐸)) |
24 | 23 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → (#‘(𝐸 ∘𝑓 𝑅𝐺)) = (#‘𝐸)) |
25 | 24 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺))) = (0..^(#‘𝐸))) |
26 | 25 | eleq2d 2687 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → (𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺))) ↔ 𝑖 ∈ (0..^(#‘𝐸)))) |
27 | 4 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → 𝐸 Fn (0..^(#‘𝐸))) |
28 | 12 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → 𝐺 Fn (0..^(#‘𝐸))) |
29 | | ovexd 6680 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → (0..^(#‘𝐸)) ∈ V) |
30 | 26 | biimpa 501 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → 𝑖 ∈ (0..^(#‘𝐸))) |
31 | | fnfvof 6911 |
. . . . 5
⊢ (((𝐸 Fn (0..^(#‘𝐸)) ∧ 𝐺 Fn (0..^(#‘𝐸))) ∧ ((0..^(#‘𝐸)) ∈ V ∧ 𝑖 ∈ (0..^(#‘𝐸)))) → ((𝐸 ∘𝑓 𝑅𝐺)‘𝑖) = ((𝐸‘𝑖)𝑅(𝐺‘𝑖))) |
32 | 27, 28, 29, 30, 31 | syl22anc 1327 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → ((𝐸 ∘𝑓 𝑅𝐺)‘𝑖) = ((𝐸‘𝑖)𝑅(𝐺‘𝑖))) |
33 | 23 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → (#‘(𝐸 ∘𝑓 𝑅𝐺)) = (#‘𝐸)) |
34 | 33 | oveq2d 6666 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → (𝑖 − (#‘(𝐸 ∘𝑓 𝑅𝐺))) = (𝑖 − (#‘𝐸))) |
35 | 34 | fveq2d 6195 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘(𝐸 ∘𝑓 𝑅𝐺)))) = ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘𝐸)))) |
36 | | ofccat.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ Word 𝑆) |
37 | | wrdf 13310 |
. . . . . . . 8
⊢ (𝐹 ∈ Word 𝑆 → 𝐹:(0..^(#‘𝐹))⟶𝑆) |
38 | | ffn 6045 |
. . . . . . . 8
⊢ (𝐹:(0..^(#‘𝐹))⟶𝑆 → 𝐹 Fn (0..^(#‘𝐹))) |
39 | 36, 37, 38 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn (0..^(#‘𝐹))) |
40 | 39 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → 𝐹 Fn (0..^(#‘𝐹))) |
41 | | ofccat.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ Word 𝑇) |
42 | | wrdf 13310 |
. . . . . . . . 9
⊢ (𝐻 ∈ Word 𝑇 → 𝐻:(0..^(#‘𝐻))⟶𝑇) |
43 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝐻:(0..^(#‘𝐻))⟶𝑇 → 𝐻 Fn (0..^(#‘𝐻))) |
44 | 41, 42, 43 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 Fn (0..^(#‘𝐻))) |
45 | | ofccat.6 |
. . . . . . . . . 10
⊢ (𝜑 → (#‘𝐹) = (#‘𝐻)) |
46 | 45 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝜑 → (0..^(#‘𝐹)) = (0..^(#‘𝐻))) |
47 | 46 | fneq2d 5982 |
. . . . . . . 8
⊢ (𝜑 → (𝐻 Fn (0..^(#‘𝐹)) ↔ 𝐻 Fn (0..^(#‘𝐻)))) |
48 | 44, 47 | mpbird 247 |
. . . . . . 7
⊢ (𝜑 → 𝐻 Fn (0..^(#‘𝐹))) |
49 | 48 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → 𝐻 Fn (0..^(#‘𝐹))) |
50 | | ovexd 6680 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → (0..^(#‘𝐹)) ∈ V) |
51 | | simplr 792 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) |
52 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) |
53 | 25 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺))) = (0..^(#‘𝐸))) |
54 | 52, 53 | neleqtrd 2722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → ¬ 𝑖 ∈ (0..^(#‘𝐸))) |
55 | 20 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → (#‘𝐸) ∈
ℕ0) |
56 | 55 | nn0zd 11480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → (#‘𝐸) ∈ ℤ) |
57 | | wrdfin 13323 |
. . . . . . . . . 10
⊢ (𝐹 ∈ Word 𝑆 → 𝐹 ∈ Fin) |
58 | | hashcl 13147 |
. . . . . . . . . 10
⊢ (𝐹 ∈ Fin →
(#‘𝐹) ∈
ℕ0) |
59 | 36, 57, 58 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (#‘𝐹) ∈
ℕ0) |
60 | 59 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → (#‘𝐹) ∈
ℕ0) |
61 | 60 | nn0zd 11480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → (#‘𝐹) ∈ ℤ) |
62 | | fzocatel 12531 |
. . . . . . 7
⊢ (((𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ∧ ¬ 𝑖 ∈ (0..^(#‘𝐸))) ∧ ((#‘𝐸) ∈ ℤ ∧ (#‘𝐹) ∈ ℤ)) → (𝑖 − (#‘𝐸)) ∈ (0..^(#‘𝐹))) |
63 | 51, 54, 56, 61, 62 | syl22anc 1327 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → (𝑖 − (#‘𝐸)) ∈ (0..^(#‘𝐹))) |
64 | | fnfvof 6911 |
. . . . . 6
⊢ (((𝐹 Fn (0..^(#‘𝐹)) ∧ 𝐻 Fn (0..^(#‘𝐹))) ∧ ((0..^(#‘𝐹)) ∈ V ∧ (𝑖 − (#‘𝐸)) ∈ (0..^(#‘𝐹)))) → ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘𝐸))) = ((𝐹‘(𝑖 − (#‘𝐸)))𝑅(𝐻‘(𝑖 − (#‘𝐸))))) |
65 | 40, 49, 50, 63, 64 | syl22anc 1327 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘𝐸))) = ((𝐹‘(𝑖 − (#‘𝐸)))𝑅(𝐻‘(𝑖 − (#‘𝐸))))) |
66 | 35, 65 | eqtrd 2656 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺)))) → ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘(𝐸 ∘𝑓 𝑅𝐺)))) = ((𝐹‘(𝑖 − (#‘𝐸)))𝑅(𝐻‘(𝑖 − (#‘𝐸))))) |
67 | 26, 32, 66 | ifbieq12d2 4119 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → if(𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺))), ((𝐸 ∘𝑓 𝑅𝐺)‘𝑖), ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘(𝐸 ∘𝑓 𝑅𝐺))))) = if(𝑖 ∈ (0..^(#‘𝐸)), ((𝐸‘𝑖)𝑅(𝐺‘𝑖)), ((𝐹‘(𝑖 − (#‘𝐸)))𝑅(𝐻‘(𝑖 − (#‘𝐸)))))) |
68 | 67 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ if(𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺))), ((𝐸 ∘𝑓 𝑅𝐺)‘𝑖), ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘(𝐸 ∘𝑓 𝑅𝐺)))))) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ if(𝑖 ∈ (0..^(#‘𝐸)), ((𝐸‘𝑖)𝑅(𝐺‘𝑖)), ((𝐹‘(𝑖 − (#‘𝐸)))𝑅(𝐻‘(𝑖 − (#‘𝐸))))))) |
69 | | ovex 6678 |
. . . 4
⊢ (𝐸 ∘𝑓
𝑅𝐺) ∈ V |
70 | | ovex 6678 |
. . . 4
⊢ (𝐹 ∘𝑓
𝑅𝐻) ∈ V |
71 | | ccatfval 13358 |
. . . 4
⊢ (((𝐸 ∘𝑓
𝑅𝐺) ∈ V ∧ (𝐹 ∘𝑓 𝑅𝐻) ∈ V) → ((𝐸 ∘𝑓 𝑅𝐺) ++ (𝐹 ∘𝑓 𝑅𝐻)) = (𝑖 ∈ (0..^((#‘(𝐸 ∘𝑓 𝑅𝐺)) + (#‘(𝐹 ∘𝑓 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺))), ((𝐸 ∘𝑓 𝑅𝐺)‘𝑖), ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘(𝐸 ∘𝑓 𝑅𝐺))))))) |
72 | 69, 70, 71 | mp2an 708 |
. . 3
⊢ ((𝐸 ∘𝑓
𝑅𝐺) ++ (𝐹 ∘𝑓 𝑅𝐻)) = (𝑖 ∈ (0..^((#‘(𝐸 ∘𝑓 𝑅𝐺)) + (#‘(𝐹 ∘𝑓 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺))), ((𝐸 ∘𝑓 𝑅𝐺)‘𝑖), ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘(𝐸 ∘𝑓 𝑅𝐺)))))) |
73 | | ovexd 6680 |
. . . . . . . . 9
⊢ (𝜑 → (0..^(#‘𝐹)) ∈ V) |
74 | | inidm 3822 |
. . . . . . . . 9
⊢
((0..^(#‘𝐹))
∩ (0..^(#‘𝐹))) =
(0..^(#‘𝐹)) |
75 | 39, 48, 73, 73, 74 | offn 6908 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐻) Fn (0..^(#‘𝐹))) |
76 | | hashfn 13164 |
. . . . . . . 8
⊢ ((𝐹 ∘𝑓
𝑅𝐻) Fn (0..^(#‘𝐹)) → (#‘(𝐹 ∘𝑓 𝑅𝐻)) = (#‘(0..^(#‘𝐹)))) |
77 | 75, 76 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (#‘(𝐹 ∘𝑓
𝑅𝐻)) = (#‘(0..^(#‘𝐹)))) |
78 | | hashfzo0 13217 |
. . . . . . . 8
⊢
((#‘𝐹) ∈
ℕ0 → (#‘(0..^(#‘𝐹))) = (#‘𝐹)) |
79 | 59, 78 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(#‘(0..^(#‘𝐹)))
= (#‘𝐹)) |
80 | 77, 79 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → (#‘(𝐹 ∘𝑓
𝑅𝐻)) = (#‘𝐹)) |
81 | 23, 80 | oveq12d 6668 |
. . . . 5
⊢ (𝜑 → ((#‘(𝐸 ∘𝑓
𝑅𝐺)) + (#‘(𝐹 ∘𝑓 𝑅𝐻))) = ((#‘𝐸) + (#‘𝐹))) |
82 | 81 | oveq2d 6666 |
. . . 4
⊢ (𝜑 → (0..^((#‘(𝐸 ∘𝑓
𝑅𝐺)) + (#‘(𝐹 ∘𝑓 𝑅𝐻)))) = (0..^((#‘𝐸) + (#‘𝐹)))) |
83 | 82 | mpteq1d 4738 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (0..^((#‘(𝐸 ∘𝑓 𝑅𝐺)) + (#‘(𝐹 ∘𝑓 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺))), ((𝐸 ∘𝑓 𝑅𝐺)‘𝑖), ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘(𝐸 ∘𝑓 𝑅𝐺)))))) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ if(𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺))), ((𝐸 ∘𝑓 𝑅𝐺)‘𝑖), ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘(𝐸 ∘𝑓 𝑅𝐺))))))) |
84 | 72, 83 | syl5eq 2668 |
. 2
⊢ (𝜑 → ((𝐸 ∘𝑓 𝑅𝐺) ++ (𝐹 ∘𝑓 𝑅𝐻)) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ if(𝑖 ∈ (0..^(#‘(𝐸 ∘𝑓 𝑅𝐺))), ((𝐸 ∘𝑓 𝑅𝐺)‘𝑖), ((𝐹 ∘𝑓 𝑅𝐻)‘(𝑖 − (#‘(𝐸 ∘𝑓 𝑅𝐺))))))) |
85 | | ovexd 6680 |
. . . . 5
⊢ (𝜑 → (0..^((#‘𝐸) + (#‘𝐹))) ∈ V) |
86 | | fvex 6201 |
. . . . . . 7
⊢ (𝐸‘𝑖) ∈ V |
87 | | fvex 6201 |
. . . . . . 7
⊢ (𝐹‘(𝑖 − (#‘𝐸))) ∈ V |
88 | 86, 87 | ifex 4156 |
. . . . . 6
⊢ if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸)))) ∈ V |
89 | 88 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸)))) ∈ V) |
90 | | fvex 6201 |
. . . . . . 7
⊢ (𝐺‘𝑖) ∈ V |
91 | | fvex 6201 |
. . . . . . 7
⊢ (𝐻‘(𝑖 − (#‘𝐺))) ∈ V |
92 | 90, 91 | ifex 4156 |
. . . . . 6
⊢ if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺)))) ∈ V |
93 | 92 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺)))) ∈ V) |
94 | | ccatfval 13358 |
. . . . . 6
⊢ ((𝐸 ∈ Word 𝑆 ∧ 𝐹 ∈ Word 𝑆) → (𝐸 ++ 𝐹) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸)))))) |
95 | 1, 36, 94 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐸 ++ 𝐹) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸)))))) |
96 | | ccatfval 13358 |
. . . . . . 7
⊢ ((𝐺 ∈ Word 𝑇 ∧ 𝐻 ∈ Word 𝑇) → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((#‘𝐺) + (#‘𝐻))) ↦ if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺)))))) |
97 | 5, 41, 96 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((#‘𝐺) + (#‘𝐻))) ↦ if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺)))))) |
98 | 9, 45 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝜑 → ((#‘𝐸) + (#‘𝐹)) = ((#‘𝐺) + (#‘𝐻))) |
99 | 98 | oveq2d 6666 |
. . . . . . 7
⊢ (𝜑 → (0..^((#‘𝐸) + (#‘𝐹))) = (0..^((#‘𝐺) + (#‘𝐻)))) |
100 | 99 | mpteq1d 4738 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺))))) = (𝑖 ∈ (0..^((#‘𝐺) + (#‘𝐻))) ↦ if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺)))))) |
101 | 97, 100 | eqtr4d 2659 |
. . . . 5
⊢ (𝜑 → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺)))))) |
102 | 85, 89, 93, 95, 101 | offval2 6914 |
. . . 4
⊢ (𝜑 → ((𝐸 ++ 𝐹) ∘𝑓 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ (if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸))))𝑅if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺))))))) |
103 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → (#‘𝐸) = (#‘𝐺)) |
104 | 103 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → (0..^(#‘𝐸)) = (0..^(#‘𝐺))) |
105 | 104 | eleq2d 2687 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → (𝑖 ∈ (0..^(#‘𝐸)) ↔ 𝑖 ∈ (0..^(#‘𝐺)))) |
106 | 103 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → (𝑖 − (#‘𝐸)) = (𝑖 − (#‘𝐺))) |
107 | 106 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → (𝐻‘(𝑖 − (#‘𝐸))) = (𝐻‘(𝑖 − (#‘𝐺)))) |
108 | 105, 107 | ifbieq2d 4111 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → if(𝑖 ∈ (0..^(#‘𝐸)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐸)))) = if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺))))) |
109 | 108 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹)))) → (if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸))))𝑅if(𝑖 ∈ (0..^(#‘𝐸)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐸))))) = (if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸))))𝑅if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺)))))) |
110 | 109 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ (if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸))))𝑅if(𝑖 ∈ (0..^(#‘𝐸)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐸)))))) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ (if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸))))𝑅if(𝑖 ∈ (0..^(#‘𝐺)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐺))))))) |
111 | 102, 110 | eqtr4d 2659 |
. . 3
⊢ (𝜑 → ((𝐸 ++ 𝐹) ∘𝑓 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ (if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸))))𝑅if(𝑖 ∈ (0..^(#‘𝐸)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐸))))))) |
112 | | ovif12 6739 |
. . . 4
⊢ (if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸))))𝑅if(𝑖 ∈ (0..^(#‘𝐸)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐸))))) = if(𝑖 ∈ (0..^(#‘𝐸)), ((𝐸‘𝑖)𝑅(𝐺‘𝑖)), ((𝐹‘(𝑖 − (#‘𝐸)))𝑅(𝐻‘(𝑖 − (#‘𝐸))))) |
113 | 112 | mpteq2i 4741 |
. . 3
⊢ (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ (if(𝑖 ∈ (0..^(#‘𝐸)), (𝐸‘𝑖), (𝐹‘(𝑖 − (#‘𝐸))))𝑅if(𝑖 ∈ (0..^(#‘𝐸)), (𝐺‘𝑖), (𝐻‘(𝑖 − (#‘𝐸)))))) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ if(𝑖 ∈ (0..^(#‘𝐸)), ((𝐸‘𝑖)𝑅(𝐺‘𝑖)), ((𝐹‘(𝑖 − (#‘𝐸)))𝑅(𝐻‘(𝑖 − (#‘𝐸)))))) |
114 | 111, 113 | syl6eq 2672 |
. 2
⊢ (𝜑 → ((𝐸 ++ 𝐹) ∘𝑓 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((#‘𝐸) + (#‘𝐹))) ↦ if(𝑖 ∈ (0..^(#‘𝐸)), ((𝐸‘𝑖)𝑅(𝐺‘𝑖)), ((𝐹‘(𝑖 − (#‘𝐸)))𝑅(𝐻‘(𝑖 − (#‘𝐸))))))) |
115 | 68, 84, 114 | 3eqtr4rd 2667 |
1
⊢ (𝜑 → ((𝐸 ++ 𝐹) ∘𝑓 𝑅(𝐺 ++ 𝐻)) = ((𝐸 ∘𝑓 𝑅𝐺) ++ (𝐹 ∘𝑓 𝑅𝐻))) |