MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cda1en Structured version   Visualization version   GIF version

Theorem cda1en 8997
Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cda1en ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 +𝑐 1𝑜) ≈ suc 𝐴)

Proof of Theorem cda1en
StepHypRef Expression
1 enrefg 7987 . . . 4 (𝐴𝑉𝐴𝐴)
21adantr 481 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → 𝐴𝐴)
3 ensn1g 8021 . . . . 5 (𝐴𝑉 → {𝐴} ≈ 1𝑜)
43ensymd 8007 . . . 4 (𝐴𝑉 → 1𝑜 ≈ {𝐴})
54adantr 481 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → 1𝑜 ≈ {𝐴})
6 simpr 477 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → ¬ 𝐴𝐴)
7 disjsn 4246 . . . 4 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
86, 7sylibr 224 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ∩ {𝐴}) = ∅)
9 cdaenun 8996 . . 3 ((𝐴𝐴 ∧ 1𝑜 ≈ {𝐴} ∧ (𝐴 ∩ {𝐴}) = ∅) → (𝐴 +𝑐 1𝑜) ≈ (𝐴 ∪ {𝐴}))
102, 5, 8, 9syl3anc 1326 . 2 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 +𝑐 1𝑜) ≈ (𝐴 ∪ {𝐴}))
11 df-suc 5729 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
1210, 11syl6breqr 4695 1 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 +𝑐 1𝑜) ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  cun 3572  cin 3573  c0 3915  {csn 4177   class class class wbr 4653  suc csuc 5725  (class class class)co 6650  1𝑜c1o 7553  cen 7952   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-er 7742  df-en 7956  df-cda 8990
This theorem is referenced by:  pm110.643ALT  9000  pwsdompw  9026
  Copyright terms: Public domain W3C validator