MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cda1dif Structured version   Visualization version   GIF version

Theorem cda1dif 8998
Description: Adding and subtracting one gives back the original set. Similar to pncan 10287 for cardinalities. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
cda1dif (𝐵 ∈ (𝐴 +𝑐 1𝑜) → ((𝐴 +𝑐 1𝑜) ∖ {𝐵}) ≈ 𝐴)

Proof of Theorem cda1dif
StepHypRef Expression
1 ovexd 6680 . . 3 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → (𝐴 +𝑐 1𝑜) ∈ V)
2 id 22 . . 3 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → 𝐵 ∈ (𝐴 +𝑐 1𝑜))
3 df1o2 7572 . . . . . . . 8 1𝑜 = {∅}
43xpeq1i 5135 . . . . . . 7 (1𝑜 × {1𝑜}) = ({∅} × {1𝑜})
5 0ex 4790 . . . . . . . 8 ∅ ∈ V
6 1on 7567 . . . . . . . . 9 1𝑜 ∈ On
76elexi 3213 . . . . . . . 8 1𝑜 ∈ V
85, 7xpsn 6407 . . . . . . 7 ({∅} × {1𝑜}) = {⟨∅, 1𝑜⟩}
94, 8eqtri 2644 . . . . . 6 (1𝑜 × {1𝑜}) = {⟨∅, 1𝑜⟩}
10 ssun2 3777 . . . . . 6 (1𝑜 × {1𝑜}) ⊆ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))
119, 10eqsstr3i 3636 . . . . 5 {⟨∅, 1𝑜⟩} ⊆ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))
12 opex 4932 . . . . . 6 ⟨∅, 1𝑜⟩ ∈ V
1312snss 4316 . . . . 5 (⟨∅, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ↔ {⟨∅, 1𝑜⟩} ⊆ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
1411, 13mpbir 221 . . . 4 ⟨∅, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))
15 relxp 5227 . . . . . . . 8 Rel (V × V)
16 cdafn 8991 . . . . . . . . . 10 +𝑐 Fn (V × V)
17 fndm 5990 . . . . . . . . . 10 ( +𝑐 Fn (V × V) → dom +𝑐 = (V × V))
1816, 17ax-mp 5 . . . . . . . . 9 dom +𝑐 = (V × V)
1918releqi 5202 . . . . . . . 8 (Rel dom +𝑐 ↔ Rel (V × V))
2015, 19mpbir 221 . . . . . . 7 Rel dom +𝑐
2120ovrcl 6686 . . . . . 6 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → (𝐴 ∈ V ∧ 1𝑜 ∈ V))
2221simpld 475 . . . . 5 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → 𝐴 ∈ V)
23 cdaval 8992 . . . . 5 ((𝐴 ∈ V ∧ 1𝑜 ∈ On) → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
2422, 6, 23sylancl 694 . . . 4 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
2514, 24syl5eleqr 2708 . . 3 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → ⟨∅, 1𝑜⟩ ∈ (𝐴 +𝑐 1𝑜))
26 difsnen 8042 . . 3 (((𝐴 +𝑐 1𝑜) ∈ V ∧ 𝐵 ∈ (𝐴 +𝑐 1𝑜) ∧ ⟨∅, 1𝑜⟩ ∈ (𝐴 +𝑐 1𝑜)) → ((𝐴 +𝑐 1𝑜) ∖ {𝐵}) ≈ ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}))
271, 2, 25, 26syl3anc 1326 . 2 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → ((𝐴 +𝑐 1𝑜) ∖ {𝐵}) ≈ ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}))
2824difeq1d 3727 . . . 4 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}) = (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ∖ {⟨∅, 1𝑜⟩}))
29 xp01disj 7576 . . . . . 6 ((𝐴 × {∅}) ∩ (1𝑜 × {1𝑜})) = ∅
30 disj3 4021 . . . . . 6 (((𝐴 × {∅}) ∩ (1𝑜 × {1𝑜})) = ∅ ↔ (𝐴 × {∅}) = ((𝐴 × {∅}) ∖ (1𝑜 × {1𝑜})))
3129, 30mpbi 220 . . . . 5 (𝐴 × {∅}) = ((𝐴 × {∅}) ∖ (1𝑜 × {1𝑜}))
32 difun2 4048 . . . . 5 (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ∖ (1𝑜 × {1𝑜})) = ((𝐴 × {∅}) ∖ (1𝑜 × {1𝑜}))
339difeq2i 3725 . . . . 5 (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ∖ (1𝑜 × {1𝑜})) = (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ∖ {⟨∅, 1𝑜⟩})
3431, 32, 333eqtr2i 2650 . . . 4 (𝐴 × {∅}) = (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ∖ {⟨∅, 1𝑜⟩})
3528, 34syl6eqr 2674 . . 3 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}) = (𝐴 × {∅}))
36 xpsneng 8045 . . . 4 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
3722, 5, 36sylancl 694 . . 3 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → (𝐴 × {∅}) ≈ 𝐴)
3835, 37eqbrtrd 4675 . 2 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}) ≈ 𝐴)
39 entr 8008 . 2 ((((𝐴 +𝑐 1𝑜) ∖ {𝐵}) ≈ ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}) ∧ ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}) ≈ 𝐴) → ((𝐴 +𝑐 1𝑜) ∖ {𝐵}) ≈ 𝐴)
4027, 38, 39syl2anc 693 1 (𝐵 ∈ (𝐴 +𝑐 1𝑜) → ((𝐴 +𝑐 1𝑜) ∖ {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183   class class class wbr 4653   × cxp 5112  dom cdm 5114  Rel wrel 5119  Oncon0 5723   Fn wfn 5883  (class class class)co 6650  1𝑜c1o 7553  cen 7952   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-en 7956  df-cda 8990
This theorem is referenced by:  canthp1  9476
  Copyright terms: Public domain W3C validator