Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme28a Structured version   Visualization version   GIF version

Theorem cdleme28a 35658
Description: Lemma for cdleme25b 35642. TODO: FIX COMMENT. (Contributed by NM, 4-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
cdleme28a.v 𝑉 = ((𝑠 𝑡) (𝑋 𝑊))
Assertion
Ref Expression
cdleme28a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊)))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑧,𝑉   𝑊,𝑠,𝑡,𝑢,𝑧   𝑋,𝑠
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑉(𝑢,𝑡,𝑠)   𝑋(𝑧,𝑢,𝑡)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme28a
StepHypRef Expression
1 cdleme26.b . . 3 𝐵 = (Base‘𝐾)
2 cdleme26.l . . 3 = (le‘𝐾)
3 simp11l 1172 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐾 ∈ HL)
4 hllat 34650 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
53, 4syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐾 ∈ Lat)
6 simp11r 1173 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑊𝐻)
7 simp12 1092 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp13 1093 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 simp22 1095 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
10 simp21 1094 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑃𝑄)
11 cdleme26.j . . . . 5 = (join‘𝐾)
12 cdleme26.m . . . . 5 = (meet‘𝐾)
13 cdleme26.a . . . . 5 𝐴 = (Atoms‘𝐾)
14 cdleme26.h . . . . 5 𝐻 = (LHyp‘𝐾)
15 cdleme27.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
16 cdleme27.f . . . . 5 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
17 cdleme27.z . . . . 5 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
18 cdleme27.n . . . . 5 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
19 cdleme27.d . . . . 5 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
20 cdleme27.c . . . . 5 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
211, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdleme27cl 35654 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ 𝑃𝑄)) → 𝐶𝐵)
223, 6, 7, 8, 9, 10, 21syl222anc 1342 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐶𝐵)
23 simp23 1096 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
24 cdleme27.g . . . . . 6 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
25 cdleme27.o . . . . . 6 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
26 cdleme27.e . . . . . 6 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
27 cdleme27.y . . . . . 6 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
281, 2, 11, 12, 13, 14, 15, 24, 17, 25, 26, 27cdleme27cl 35654 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ 𝑃𝑄)) → 𝑌𝐵)
293, 6, 7, 8, 23, 10, 28syl222anc 1342 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑌𝐵)
30 simp11 1091 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3130, 9, 233jca 1242 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)))
32 simp33 1099 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
33 simp31 1097 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑠𝑡)
34 simp32l 1186 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠 (𝑋 𝑊)) = 𝑋)
35 simp32r 1187 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑡 (𝑋 𝑊)) = 𝑋)
3633, 34, 353jca 1242 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))
37 cdleme28a.v . . . . . . 7 𝑉 = ((𝑠 𝑡) (𝑋 𝑊))
381, 2, 11, 12, 13, 14, 37cdleme23b 35638 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → 𝑉𝐴)
3931, 32, 36, 38syl3anc 1326 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉𝐴)
401, 13atbase 34576 . . . . 5 (𝑉𝐴𝑉𝐵)
4139, 40syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉𝐵)
421, 11latjcl 17051 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → (𝑌 𝑉) ∈ 𝐵)
435, 29, 41, 42syl3anc 1326 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 𝑉) ∈ 𝐵)
44 simp33l 1188 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑋𝐵)
451, 14lhpbase 35284 . . . . . 6 (𝑊𝐻𝑊𝐵)
466, 45syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑊𝐵)
471, 12latmcl 17052 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
485, 44, 46, 47syl3anc 1326 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋 𝑊) ∈ 𝐵)
491, 11latjcl 17051 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑌 (𝑋 𝑊)) ∈ 𝐵)
505, 29, 48, 49syl3anc 1326 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 (𝑋 𝑊)) ∈ 𝐵)
511, 2, 11, 12, 13, 14, 37cdleme23c 35639 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → 𝑠 (𝑡 𝑉))
5231, 32, 36, 51syl3anc 1326 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑠 (𝑡 𝑉))
5333, 52jca 554 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
541, 2, 11, 12, 13, 14, 37cdleme23a 35637 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑠𝑡 ∧ (𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → 𝑉 𝑊)
5531, 32, 36, 54syl3anc 1326 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉 𝑊)
5639, 55jca 554 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑉𝐴𝑉 𝑊))
571, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27cdleme27a 35655 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
5830, 10, 9, 7, 8, 23, 53, 56, 57syl332anc 1357 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐶 (𝑌 𝑉))
59 simp22l 1180 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑠𝐴)
60 simp23l 1182 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑡𝐴)
611, 11, 13hlatjcl 34653 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑠𝐴𝑡𝐴) → (𝑠 𝑡) ∈ 𝐵)
623, 59, 60, 61syl3anc 1326 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠 𝑡) ∈ 𝐵)
631, 2, 12latmle2 17077 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑠 𝑡) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → ((𝑠 𝑡) (𝑋 𝑊)) (𝑋 𝑊))
645, 62, 48, 63syl3anc 1326 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝑠 𝑡) (𝑋 𝑊)) (𝑋 𝑊))
6537, 64syl5eqbr 4688 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑉 (𝑋 𝑊))
661, 2, 11latjlej2 17066 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑉𝐵 ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵)) → (𝑉 (𝑋 𝑊) → (𝑌 𝑉) (𝑌 (𝑋 𝑊))))
675, 41, 48, 29, 66syl13anc 1328 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑉 (𝑋 𝑊) → (𝑌 𝑉) (𝑌 (𝑋 𝑊))))
6865, 67mpd 15 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 𝑉) (𝑌 (𝑋 𝑊)))
691, 2, 5, 22, 43, 50, 58, 68lattrd 17058 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐶 (𝑌 (𝑋 𝑊)))
701, 2, 11latlej2 17061 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑋 𝑊) (𝑌 (𝑋 𝑊)))
715, 29, 48, 70syl3anc 1326 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋 𝑊) (𝑌 (𝑋 𝑊)))
721, 2, 11latjle12 17062 . . 3 ((𝐾 ∈ Lat ∧ (𝐶𝐵 ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 (𝑋 𝑊)) ∈ 𝐵)) → ((𝐶 (𝑌 (𝑋 𝑊)) ∧ (𝑋 𝑊) (𝑌 (𝑋 𝑊))) ↔ (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊))))
735, 22, 48, 50, 72syl13anc 1328 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝐶 (𝑌 (𝑋 𝑊)) ∧ (𝑋 𝑊) (𝑌 (𝑋 𝑊))) ↔ (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊))))
7469, 71, 73mpbi2and 956 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  ifcif 4086   class class class wbr 4653  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  meetcmee 16945  Latclat 17045  Atomscatm 34550  HLchlt 34637  LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274
This theorem is referenced by:  cdleme28b  35659
  Copyright terms: Public domain W3C validator