MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimsncls Structured version   Visualization version   GIF version

Theorem flimsncls 21790
Description: If 𝐴 is a limit point of the filter 𝐹, then all the points which specialize 𝐴 (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015.)
Assertion
Ref Expression
flimsncls (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ (𝐽 fLim 𝐹))

Proof of Theorem flimsncls
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 21769 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
2 eqid 2622 . . . . . . . 8 𝐽 = 𝐽
32flimelbas 21772 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 𝐽)
43snssd 4340 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → {𝐴} ⊆ 𝐽)
52clsss3 20863 . . . . . 6 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽) → ((cls‘𝐽)‘{𝐴}) ⊆ 𝐽)
61, 4, 5syl2anc 693 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ 𝐽)
76sselda 3603 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 𝐽)
8 simpll 790 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴 ∈ (𝐽 fLim 𝐹))
98, 1syl 17 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐽 ∈ Top)
10 simprl 794 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐽)
111adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐽 ∈ Top)
124adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → {𝐴} ⊆ 𝐽)
13 simpr 477 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ ((cls‘𝐽)‘{𝐴}))
1411, 12, 133jca 1242 . . . . . . . . 9 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → (𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})))
152clsndisj 20879 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∩ {𝐴}) ≠ ∅)
16 disjsn 4246 . . . . . . . . . . 11 ((𝑦 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝑦)
1716necon2abii 2844 . . . . . . . . . 10 (𝐴𝑦 ↔ (𝑦 ∩ {𝐴}) ≠ ∅)
1815, 17sylibr 224 . . . . . . . . 9 (((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴𝑦)
1914, 18sylan 488 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴𝑦)
20 opnneip 20923 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑦𝐽𝐴𝑦) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
219, 10, 19, 20syl3anc 1326 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
22 flimnei 21771 . . . . . . 7 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦𝐹)
238, 21, 22syl2anc 693 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
2423expr 643 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
2524ralrimiva 2966 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
262toptopon 20722 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2711, 26sylib 208 . . . . 5 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐽 ∈ (TopOn‘ 𝐽))
282flimfil 21773 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
2928adantr 481 . . . . 5 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐹 ∈ (Fil‘ 𝐽))
30 flimopn 21779 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹 ∈ (Fil‘ 𝐽)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 𝐽 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
3127, 29, 30syl2anc 693 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 𝐽 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
327, 25, 31mpbir2and 957 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ (𝐽 fLim 𝐹))
3332ex 450 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑥 ∈ ((cls‘𝐽)‘{𝐴}) → 𝑥 ∈ (𝐽 fLim 𝐹)))
3433ssrdv 3609 1 (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wne 2794  wral 2912  cin 3573  wss 3574  c0 3915  {csn 4177   cuni 4436  cfv 5888  (class class class)co 6650  Topctop 20698  TopOnctopon 20715  clsccl 20822  neicnei 20901  Filcfil 21649   fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-fil 21650  df-flim 21743
This theorem is referenced by:  tsmscls  21941
  Copyright terms: Public domain W3C validator