| Step | Hyp | Ref
| Expression |
| 1 | | heibor1.4 |
. . 3
⊢ (𝜑 → 𝐽 ∈ Comp) |
| 2 | | heibor1.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 3 | | metxmet 22139 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 4 | 2, 3 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 5 | | heibor.1 |
. . . . . . . . . 10
⊢ 𝐽 = (MetOpen‘𝐷) |
| 6 | 5 | mopntop 22245 |
. . . . . . . . 9
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 7 | 4, 6 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ Top) |
| 8 | | imassrn 5477 |
. . . . . . . . 9
⊢ (𝐹 “ 𝑢) ⊆ ran 𝐹 |
| 9 | | heibor1.6 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| 10 | | frn 6053 |
. . . . . . . . . . 11
⊢ (𝐹:ℕ⟶𝑋 → ran 𝐹 ⊆ 𝑋) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝐹 ⊆ 𝑋) |
| 12 | 5 | mopnuni 22246 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 13 | 4, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 14 | 11, 13 | sseqtrd 3641 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐽) |
| 15 | 8, 14 | syl5ss 3614 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 “ 𝑢) ⊆ ∪ 𝐽) |
| 16 | | eqid 2622 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 17 | 16 | clscld 20851 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝐹 “ 𝑢) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∈ (Clsd‘𝐽)) |
| 18 | 7, 15, 17 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∈ (Clsd‘𝐽)) |
| 19 | | eleq1a 2696 |
. . . . . . 7
⊢
(((cls‘𝐽)‘(𝐹 “ 𝑢)) ∈ (Clsd‘𝐽) → (𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑘 ∈ (Clsd‘𝐽))) |
| 20 | 18, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑘 ∈ (Clsd‘𝐽))) |
| 21 | 20 | rexlimdvw 3034 |
. . . . 5
⊢ (𝜑 → (∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑘 ∈ (Clsd‘𝐽))) |
| 22 | 21 | abssdv 3676 |
. . . 4
⊢ (𝜑 → {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} ⊆ (Clsd‘𝐽)) |
| 23 | | fvex 6201 |
. . . . 5
⊢
(Clsd‘𝐽)
∈ V |
| 24 | 23 | elpw2 4828 |
. . . 4
⊢ ({𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ∈ 𝒫 (Clsd‘𝐽) ↔ {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} ⊆ (Clsd‘𝐽)) |
| 25 | 22, 24 | sylibr 224 |
. . 3
⊢ (𝜑 → {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} ∈ 𝒫 (Clsd‘𝐽)) |
| 26 | | elin 3796 |
. . . . . . 7
⊢ (𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ∩ Fin) ↔ (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} ∧ 𝑟 ∈ Fin)) |
| 27 | | selpw 4165 |
. . . . . . . . 9
⊢ (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ↔ 𝑟 ⊆ {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))}) |
| 28 | | ssabral 3673 |
. . . . . . . . 9
⊢ (𝑟 ⊆ {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} ↔ ∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 29 | 27, 28 | bitri 264 |
. . . . . . . 8
⊢ (𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ↔ ∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 30 | 29 | anbi1i 731 |
. . . . . . 7
⊢ ((𝑟 ∈ 𝒫 {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ∧ 𝑟 ∈ Fin) ↔ (∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ 𝑟 ∈ Fin)) |
| 31 | 26, 30 | bitri 264 |
. . . . . 6
⊢ (𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ∩ Fin) ↔ (∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ 𝑟 ∈ Fin)) |
| 32 | | raleq 3138 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = ∅ → (∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 33 | 32 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ (𝑚 = ∅ → ((𝜑 ∧ ∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) ↔ (𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))))) |
| 34 | | inteq 4478 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = ∅ → ∩ 𝑚 =
∩ ∅) |
| 35 | 34 | sseq2d 3633 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = ∅ → ((𝐹 “ 𝑘) ⊆ ∩ 𝑚 ↔ (𝐹 “ 𝑘) ⊆ ∩
∅)) |
| 36 | 35 | rexbidv 3052 |
. . . . . . . . . . . . 13
⊢ (𝑚 = ∅ → (∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ 𝑚
↔ ∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ ∅)) |
| 37 | 33, 36 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑚 = ∅ → (((𝜑 ∧ ∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑚) ↔ ((𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩
∅))) |
| 38 | | raleq 3138 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑦 → (∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ ∀𝑘 ∈ 𝑦 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 39 | 38 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑦 → ((𝜑 ∧ ∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) ↔ (𝜑 ∧ ∀𝑘 ∈ 𝑦 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))))) |
| 40 | | inteq 4478 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑦 → ∩ 𝑚 = ∩
𝑦) |
| 41 | 40 | sseq2d 3633 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑦 → ((𝐹 “ 𝑘) ⊆ ∩ 𝑚 ↔ (𝐹 “ 𝑘) ⊆ ∩ 𝑦)) |
| 42 | 41 | rexbidv 3052 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑦 → (∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑚 ↔ ∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ 𝑦)) |
| 43 | 39, 42 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑦 → (((𝜑 ∧ ∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑚) ↔ ((𝜑 ∧ ∀𝑘 ∈ 𝑦 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑦))) |
| 44 | | raleq 3138 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑦 ∪ {𝑛}) → (∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 45 | 44 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑦 ∪ {𝑛}) → ((𝜑 ∧ ∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))))) |
| 46 | | inteq 4478 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑦 ∪ {𝑛}) → ∩ 𝑚 = ∩
(𝑦 ∪ {𝑛})) |
| 47 | 46 | sseq2d 3633 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑦 ∪ {𝑛}) → ((𝐹 “ 𝑘) ⊆ ∩ 𝑚 ↔ (𝐹 “ 𝑘) ⊆ ∩ (𝑦 ∪ {𝑛}))) |
| 48 | 47 | rexbidv 3052 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑦 ∪ {𝑛}) → (∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑚 ↔ ∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ (𝑦
∪ {𝑛}))) |
| 49 | 45, 48 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑦 ∪ {𝑛}) → (((𝜑 ∧ ∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑚) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ (𝑦 ∪ {𝑛})))) |
| 50 | | raleq 3138 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑟 → (∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ ∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 51 | 50 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑟 → ((𝜑 ∧ ∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) ↔ (𝜑 ∧ ∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))))) |
| 52 | | inteq 4478 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑟 → ∩ 𝑚 = ∩
𝑟) |
| 53 | 52 | sseq2d 3633 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑟 → ((𝐹 “ 𝑘) ⊆ ∩ 𝑚 ↔ (𝐹 “ 𝑘) ⊆ ∩ 𝑟)) |
| 54 | 53 | rexbidv 3052 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑟 → (∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑚 ↔ ∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ 𝑟)) |
| 55 | 51, 54 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑟 → (((𝜑 ∧ ∀𝑘 ∈ 𝑚 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑚) ↔ ((𝜑 ∧ ∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑟))) |
| 56 | | uzf 11690 |
. . . . . . . . . . . . . . . 16
⊢
ℤ≥:ℤ⟶𝒫 ℤ |
| 57 | | ffn 6045 |
. . . . . . . . . . . . . . . 16
⊢
(ℤ≥:ℤ⟶𝒫 ℤ →
ℤ≥ Fn ℤ) |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
ℤ≥ Fn ℤ |
| 59 | | 0z 11388 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℤ |
| 60 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . 15
⊢
((ℤ≥ Fn ℤ ∧ 0 ∈ ℤ) →
(ℤ≥‘0) ∈ ran
ℤ≥) |
| 61 | 58, 59, 60 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘0) ∈ ran
ℤ≥ |
| 62 | | ssv 3625 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 “
(ℤ≥‘0)) ⊆ V |
| 63 | | int0 4490 |
. . . . . . . . . . . . . . 15
⊢ ∩ ∅ = V |
| 64 | 62, 63 | sseqtr4i 3638 |
. . . . . . . . . . . . . 14
⊢ (𝐹 “
(ℤ≥‘0)) ⊆ ∩
∅ |
| 65 | | imaeq2 5462 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 =
(ℤ≥‘0) → (𝐹 “ 𝑘) = (𝐹 “
(ℤ≥‘0))) |
| 66 | 65 | sseq1d 3632 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 =
(ℤ≥‘0) → ((𝐹 “ 𝑘) ⊆ ∩
∅ ↔ (𝐹 “
(ℤ≥‘0)) ⊆ ∩
∅)) |
| 67 | 66 | rspcev 3309 |
. . . . . . . . . . . . . 14
⊢
(((ℤ≥‘0) ∈ ran ℤ≥
∧ (𝐹 “
(ℤ≥‘0)) ⊆ ∩ ∅)
→ ∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ ∅) |
| 68 | 61, 64, 67 | mp2an 708 |
. . . . . . . . . . . . 13
⊢
∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ ∅ |
| 69 | 68 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∀𝑘 ∈ ∅ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩
∅) |
| 70 | | ssun1 3776 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑛}) |
| 71 | | ssralv 3666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑛}) → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → ∀𝑘 ∈ 𝑦 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 72 | 70, 71 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → ∀𝑘 ∈ 𝑦 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 73 | 72 | anim2i 593 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → (𝜑 ∧ ∀𝑘 ∈ 𝑦 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 74 | 73 | imim1i 63 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑦 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑦)) |
| 75 | | ssun2 3777 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑛} ⊆ (𝑦 ∪ {𝑛}) |
| 76 | | ssralv 3666 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑛} ⊆ (𝑦 ∪ {𝑛}) → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → ∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 77 | 75, 76 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → ∀𝑘 ∈ {𝑛}∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 78 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑛 ∈ V |
| 79 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑛 → (𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ 𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 80 | 79 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑛 → (∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ ∃𝑢 ∈ ran ℤ≥𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 81 | 78, 80 | ralsn 4222 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
{𝑛}∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ ∃𝑢 ∈ ran ℤ≥𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 82 | 77, 81 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → ∃𝑢 ∈ ran ℤ≥𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 83 | | uzin2 14084 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ∈ ran
ℤ≥ ∧ 𝑘 ∈ ran ℤ≥) →
(𝑢 ∩ 𝑘) ∈ ran
ℤ≥) |
| 84 | 8, 11 | syl5ss 3614 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝐹 “ 𝑢) ⊆ 𝑋) |
| 85 | 84, 13 | sseqtrd 3641 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐹 “ 𝑢) ⊆ ∪ 𝐽) |
| 86 | 16 | sscls 20860 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐽 ∈ Top ∧ (𝐹 “ 𝑢) ⊆ ∪ 𝐽) → (𝐹 “ 𝑢) ⊆ ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 87 | 7, 85, 86 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐹 “ 𝑢) ⊆ ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 88 | | sseq2 3627 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → ((𝐹 “ 𝑢) ⊆ 𝑛 ↔ (𝐹 “ 𝑢) ⊆ ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 89 | 87, 88 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → (𝐹 “ 𝑢) ⊆ 𝑛)) |
| 90 | | inss2 3834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑢 ∩ 𝑘) ⊆ 𝑘 |
| 91 | | inss1 3833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑢 ∩ 𝑘) ⊆ 𝑢 |
| 92 | | imass2 5501 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑢 ∩ 𝑘) ⊆ 𝑘 → (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ (𝐹 “ 𝑘)) |
| 93 | | imass2 5501 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑢 ∩ 𝑘) ⊆ 𝑢 → (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ (𝐹 “ 𝑢)) |
| 94 | 92, 93 | anim12i 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑢 ∩ 𝑘) ⊆ 𝑘 ∧ (𝑢 ∩ 𝑘) ⊆ 𝑢) → ((𝐹 “ (𝑢 ∩ 𝑘)) ⊆ (𝐹 “ 𝑘) ∧ (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ (𝐹 “ 𝑢))) |
| 95 | | ssin 3835 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹 “ (𝑢 ∩ 𝑘)) ⊆ (𝐹 “ 𝑘) ∧ (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ (𝐹 “ 𝑢)) ↔ (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ ((𝐹 “ 𝑘) ∩ (𝐹 “ 𝑢))) |
| 96 | 94, 95 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑢 ∩ 𝑘) ⊆ 𝑘 ∧ (𝑢 ∩ 𝑘) ⊆ 𝑢) → (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ ((𝐹 “ 𝑘) ∩ (𝐹 “ 𝑢))) |
| 97 | 90, 91, 96 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ ((𝐹 “ 𝑘) ∩ (𝐹 “ 𝑢)) |
| 98 | | ss2in 3840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹 “ 𝑘) ⊆ ∩ 𝑦 ∧ (𝐹 “ 𝑢) ⊆ 𝑛) → ((𝐹 “ 𝑘) ∩ (𝐹 “ 𝑢)) ⊆ (∩
𝑦 ∩ 𝑛)) |
| 99 | 97, 98 | syl5ss 3614 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 “ 𝑘) ⊆ ∩ 𝑦 ∧ (𝐹 “ 𝑢) ⊆ 𝑛) → (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ (∩
𝑦 ∩ 𝑛)) |
| 100 | 78 | intunsn 4516 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ∩ (𝑦
∪ {𝑛}) = (∩ 𝑦
∩ 𝑛) |
| 101 | 99, 100 | syl6sseqr 3652 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 “ 𝑘) ⊆ ∩ 𝑦 ∧ (𝐹 “ 𝑢) ⊆ 𝑛) → (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ ∩
(𝑦 ∪ {𝑛})) |
| 102 | 101 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹 “ 𝑢) ⊆ 𝑛 → ((𝐹 “ 𝑘) ⊆ ∩ 𝑦 → (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ ∩
(𝑦 ∪ {𝑛}))) |
| 103 | 89, 102 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → ((𝐹 “ 𝑘) ⊆ ∩ 𝑦 → (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ ∩
(𝑦 ∪ {𝑛})))) |
| 104 | 103 | impd 447 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ (𝐹 “ 𝑘) ⊆ ∩ 𝑦) → (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ ∩
(𝑦 ∪ {𝑛}))) |
| 105 | | imaeq2 5462 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 = (𝑢 ∩ 𝑘) → (𝐹 “ 𝑚) = (𝐹 “ (𝑢 ∩ 𝑘))) |
| 106 | 105 | sseq1d 3632 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 = (𝑢 ∩ 𝑘) → ((𝐹 “ 𝑚) ⊆ ∩ (𝑦 ∪ {𝑛}) ↔ (𝐹 “ (𝑢 ∩ 𝑘)) ⊆ ∩
(𝑦 ∪ {𝑛}))) |
| 107 | 106 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑢 ∩ 𝑘) ∈ ran ℤ≥ ∧
(𝐹 “ (𝑢 ∩ 𝑘)) ⊆ ∩
(𝑦 ∪ {𝑛})) → ∃𝑚 ∈ ran
ℤ≥(𝐹
“ 𝑚) ⊆ ∩ (𝑦
∪ {𝑛})) |
| 108 | 107 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 “ (𝑢 ∩ 𝑘)) ⊆ ∩
(𝑦 ∪ {𝑛}) → ((𝑢 ∩ 𝑘) ∈ ran ℤ≥ →
∃𝑚 ∈ ran
ℤ≥(𝐹
“ 𝑚) ⊆ ∩ (𝑦
∪ {𝑛}))) |
| 109 | 104, 108 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ (𝐹 “ 𝑘) ⊆ ∩ 𝑦) → ((𝑢 ∩ 𝑘) ∈ ran ℤ≥ →
∃𝑚 ∈ ran
ℤ≥(𝐹
“ 𝑚) ⊆ ∩ (𝑦
∪ {𝑛})))) |
| 110 | 109 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑢 ∩ 𝑘) ∈ ran ℤ≥ →
((𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ (𝐹 “ 𝑘) ⊆ ∩ 𝑦) → ∃𝑚 ∈ ran
ℤ≥(𝐹
“ 𝑚) ⊆ ∩ (𝑦
∪ {𝑛})))) |
| 111 | 83, 110 | syl5 34 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑢 ∈ ran ℤ≥ ∧
𝑘 ∈ ran
ℤ≥) → ((𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ (𝐹 “ 𝑘) ⊆ ∩ 𝑦) → ∃𝑚 ∈ ran
ℤ≥(𝐹
“ 𝑚) ⊆ ∩ (𝑦
∪ {𝑛})))) |
| 112 | 111 | rexlimdvv 3037 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (∃𝑢 ∈ ran
ℤ≥∃𝑘 ∈ ran ℤ≥(𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ (𝐹 “ 𝑘) ⊆ ∩ 𝑦) → ∃𝑚 ∈ ran
ℤ≥(𝐹
“ 𝑚) ⊆ ∩ (𝑦
∪ {𝑛}))) |
| 113 | | reeanv 3107 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑢 ∈ ran
ℤ≥∃𝑘 ∈ ran ℤ≥(𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ (𝐹 “ 𝑘) ⊆ ∩ 𝑦) ↔ (∃𝑢 ∈ ran
ℤ≥𝑛 =
((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑦)) |
| 114 | | imaeq2 5462 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑘 → (𝐹 “ 𝑚) = (𝐹 “ 𝑘)) |
| 115 | 114 | sseq1d 3632 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑘 → ((𝐹 “ 𝑚) ⊆ ∩ (𝑦 ∪ {𝑛}) ↔ (𝐹 “ 𝑘) ⊆ ∩ (𝑦 ∪ {𝑛}))) |
| 116 | 115 | cbvrexv 3172 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑚 ∈ ran
ℤ≥(𝐹
“ 𝑚) ⊆ ∩ (𝑦
∪ {𝑛}) ↔
∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ (𝑦
∪ {𝑛})) |
| 117 | 112, 113,
116 | 3imtr3g 284 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((∃𝑢 ∈ ran
ℤ≥𝑛 =
((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑦) → ∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ (𝑦
∪ {𝑛}))) |
| 118 | 117 | expd 452 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∃𝑢 ∈ ran ℤ≥𝑛 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → (∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑦 → ∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ (𝑦
∪ {𝑛})))) |
| 119 | 82, 118 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → (∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑦 → ∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ (𝑦
∪ {𝑛})))) |
| 120 | 119 | imp 445 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → (∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑦 → ∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ (𝑦
∪ {𝑛}))) |
| 121 | 74, 120 | sylcom 30 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑦 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ (𝑦 ∪ {𝑛}))) |
| 122 | 121 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ Fin → (((𝜑 ∧ ∀𝑘 ∈ 𝑦 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑦) → ((𝜑 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑛})∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ (𝑦 ∪ {𝑛})))) |
| 123 | 37, 43, 49, 55, 69, 122 | findcard2 8200 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ Fin → ((𝜑 ∧ ∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑟)) |
| 124 | 123 | com12 32 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))) → (𝑟 ∈ Fin → ∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑟)) |
| 125 | 124 | impr 649 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ 𝑟 ∈ Fin)) → ∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ 𝑟) |
| 126 | | ffn 6045 |
. . . . . . . . . . . 12
⊢ (𝐹:ℕ⟶𝑋 → 𝐹 Fn ℕ) |
| 127 | 9, 126 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn ℕ) |
| 128 | | inss1 3833 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∩ ℕ) ⊆ 𝑘 |
| 129 | | imass2 5501 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∩ ℕ) ⊆ 𝑘 → (𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹 “ 𝑘)) |
| 130 | 128, 129 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹 “ 𝑘) |
| 131 | | nnuz 11723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℕ =
(ℤ≥‘1) |
| 132 | | 1z 11407 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℤ |
| 133 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((ℤ≥ Fn ℤ ∧ 1 ∈ ℤ) →
(ℤ≥‘1) ∈ ran
ℤ≥) |
| 134 | 58, 132, 133 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(ℤ≥‘1) ∈ ran
ℤ≥ |
| 135 | 131, 134 | eqeltri 2697 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℕ
∈ ran ℤ≥ |
| 136 | | uzin2 14084 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ran
ℤ≥ ∧ ℕ ∈ ran ℤ≥) →
(𝑘 ∩ ℕ) ∈
ran ℤ≥) |
| 137 | 135, 136 | mpan2 707 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ran
ℤ≥ → (𝑘 ∩ ℕ) ∈ ran
ℤ≥) |
| 138 | | uzn0 11703 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∩ ℕ) ∈ ran
ℤ≥ → (𝑘 ∩ ℕ) ≠
∅) |
| 139 | 137, 138 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ran
ℤ≥ → (𝑘 ∩ ℕ) ≠
∅) |
| 140 | | n0 3931 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∩ ℕ) ≠ ∅
↔ ∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ)) |
| 141 | 139, 140 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ran
ℤ≥ → ∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ)) |
| 142 | | fnfun 5988 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 Fn ℕ → Fun 𝐹) |
| 143 | | inss2 3834 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∩ ℕ) ⊆
ℕ |
| 144 | | fndm 5990 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 Fn ℕ → dom 𝐹 = ℕ) |
| 145 | 143, 144 | syl5sseqr 3654 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 Fn ℕ → (𝑘 ∩ ℕ) ⊆ dom
𝐹) |
| 146 | | funfvima2 6493 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐹 ∧ (𝑘 ∩ ℕ) ⊆ dom 𝐹) → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹‘𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ)))) |
| 147 | 142, 145,
146 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 Fn ℕ → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹‘𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ)))) |
| 148 | | ne0i 3921 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑦) ∈ (𝐹 “ (𝑘 ∩ ℕ)) → (𝐹 “ (𝑘 ∩ ℕ)) ≠
∅) |
| 149 | 147, 148 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn ℕ → (𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠
∅)) |
| 150 | 149 | exlimdv 1861 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 Fn ℕ → (∃𝑦 𝑦 ∈ (𝑘 ∩ ℕ) → (𝐹 “ (𝑘 ∩ ℕ)) ≠
∅)) |
| 151 | 141, 150 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 Fn ℕ → (𝑘 ∈ ran
ℤ≥ → (𝐹 “ (𝑘 ∩ ℕ)) ≠
∅)) |
| 152 | 151 | imp 445 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran
ℤ≥) → (𝐹 “ (𝑘 ∩ ℕ)) ≠
∅) |
| 153 | | ssn0 3976 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 “ (𝑘 ∩ ℕ)) ⊆ (𝐹 “ 𝑘) ∧ (𝐹 “ (𝑘 ∩ ℕ)) ≠ ∅) → (𝐹 “ 𝑘) ≠ ∅) |
| 154 | 130, 152,
153 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran
ℤ≥) → (𝐹 “ 𝑘) ≠ ∅) |
| 155 | | ssn0 3976 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 “ 𝑘) ⊆ ∩ 𝑟 ∧ (𝐹 “ 𝑘) ≠ ∅) → ∩ 𝑟
≠ ∅) |
| 156 | 155 | expcom 451 |
. . . . . . . . . . . . 13
⊢ ((𝐹 “ 𝑘) ≠ ∅ → ((𝐹 “ 𝑘) ⊆ ∩ 𝑟 → ∩ 𝑟
≠ ∅)) |
| 157 | 154, 156 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn ℕ ∧ 𝑘 ∈ ran
ℤ≥) → ((𝐹 “ 𝑘) ⊆ ∩ 𝑟 → ∩ 𝑟
≠ ∅)) |
| 158 | 157 | rexlimdva 3031 |
. . . . . . . . . . 11
⊢ (𝐹 Fn ℕ → (∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ 𝑟
→ ∩ 𝑟 ≠ ∅)) |
| 159 | 127, 158 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑘 ∈ ran ℤ≥(𝐹 “ 𝑘) ⊆ ∩ 𝑟 → ∩ 𝑟
≠ ∅)) |
| 160 | 159 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ 𝑟 ∈ Fin)) → (∃𝑘 ∈ ran
ℤ≥(𝐹
“ 𝑘) ⊆ ∩ 𝑟
→ ∩ 𝑟 ≠ ∅)) |
| 161 | 125, 160 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ 𝑟 ∈ Fin)) → ∩ 𝑟
≠ ∅) |
| 162 | 161 | necomd 2849 |
. . . . . . 7
⊢ ((𝜑 ∧ (∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ 𝑟 ∈ Fin)) → ∅ ≠ ∩ 𝑟) |
| 163 | 162 | neneqd 2799 |
. . . . . 6
⊢ ((𝜑 ∧ (∀𝑘 ∈ 𝑟 ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ∧ 𝑟 ∈ Fin)) → ¬ ∅ = ∩ 𝑟) |
| 164 | 31, 163 | sylan2b 492 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} ∩ Fin)) → ¬ ∅ = ∩ 𝑟) |
| 165 | 164 | nrexdv 3001 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ∩ Fin)∅ = ∩ 𝑟) |
| 166 | | 0ex 4790 |
. . . . 5
⊢ ∅
∈ V |
| 167 | | zex 11386 |
. . . . . . . 8
⊢ ℤ
∈ V |
| 168 | 167 | pwex 4848 |
. . . . . . 7
⊢ 𝒫
ℤ ∈ V |
| 169 | | frn 6053 |
. . . . . . . 8
⊢
(ℤ≥:ℤ⟶𝒫 ℤ → ran
ℤ≥ ⊆ 𝒫 ℤ) |
| 170 | 56, 169 | ax-mp 5 |
. . . . . . 7
⊢ ran
ℤ≥ ⊆ 𝒫 ℤ |
| 171 | 168, 170 | ssexi 4803 |
. . . . . 6
⊢ ran
ℤ≥ ∈ V |
| 172 | 171 | abrexex 7141 |
. . . . 5
⊢ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ∈ V |
| 173 | | elfi 8319 |
. . . . 5
⊢ ((∅
∈ V ∧ {𝑘 ∣
∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ∈ V) → (∅ ∈
(fi‘{𝑘 ∣
∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) ↔ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} ∩ Fin)∅ = ∩ 𝑟)) |
| 174 | 166, 172,
173 | mp2an 708 |
. . . 4
⊢ (∅
∈ (fi‘{𝑘 ∣
∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) ↔ ∃𝑟 ∈ (𝒫 {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} ∩ Fin)∅ = ∩ 𝑟) |
| 175 | 165, 174 | sylnibr 319 |
. . 3
⊢ (𝜑 → ¬ ∅ ∈
(fi‘{𝑘 ∣
∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))})) |
| 176 | | cmptop 21198 |
. . . . . 6
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| 177 | | cmpfi 21211 |
. . . . . 6
⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔
∀𝑚 ∈ 𝒫
(Clsd‘𝐽)(¬
∅ ∈ (fi‘𝑚)
→ ∩ 𝑚 ≠ ∅))) |
| 178 | 176, 177 | syl 17 |
. . . . 5
⊢ (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔
∀𝑚 ∈ 𝒫
(Clsd‘𝐽)(¬
∅ ∈ (fi‘𝑚)
→ ∩ 𝑚 ≠ ∅))) |
| 179 | 178 | ibi 256 |
. . . 4
⊢ (𝐽 ∈ Comp →
∀𝑚 ∈ 𝒫
(Clsd‘𝐽)(¬
∅ ∈ (fi‘𝑚)
→ ∩ 𝑚 ≠ ∅)) |
| 180 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} → (fi‘𝑚) = (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))})) |
| 181 | 180 | eleq2d 2687 |
. . . . . . 7
⊢ (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} → (∅ ∈ (fi‘𝑚) ↔ ∅ ∈
(fi‘{𝑘 ∣
∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}))) |
| 182 | 181 | notbid 308 |
. . . . . 6
⊢ (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} → (¬ ∅ ∈
(fi‘𝑚) ↔ ¬
∅ ∈ (fi‘{𝑘
∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}))) |
| 183 | | inteq 4478 |
. . . . . . . 8
⊢ (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} → ∩ 𝑚 = ∩
{𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) |
| 184 | 183 | neeq1d 2853 |
. . . . . . 7
⊢ (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} → (∩
𝑚 ≠ ∅ ↔ ∩ {𝑘
∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ≠ ∅)) |
| 185 | | n0 3931 |
. . . . . . 7
⊢ (∩ {𝑘
∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ∩ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) |
| 186 | 184, 185 | syl6bb 276 |
. . . . . 6
⊢ (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} → (∩
𝑚 ≠ ∅ ↔
∃𝑦 𝑦 ∈ ∩ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))})) |
| 187 | 182, 186 | imbi12d 334 |
. . . . 5
⊢ (𝑚 = {𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))} → ((¬ ∅ ∈
(fi‘𝑚) → ∩ 𝑚
≠ ∅) ↔ (¬ ∅ ∈ (fi‘{𝑘 ∣ ∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢))}) → ∃𝑦 𝑦 ∈ ∩ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}))) |
| 188 | 187 | rspccv 3306 |
. . . 4
⊢
(∀𝑚 ∈
𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑚) → ∩ 𝑚
≠ ∅) → ({𝑘
∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ∈ 𝒫 (Clsd‘𝐽) → (¬ ∅ ∈
(fi‘{𝑘 ∣
∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) → ∃𝑦 𝑦 ∈ ∩ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}))) |
| 189 | 179, 188 | syl 17 |
. . 3
⊢ (𝐽 ∈ Comp → ({𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ∈ 𝒫 (Clsd‘𝐽) → (¬ ∅ ∈
(fi‘{𝑘 ∣
∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) → ∃𝑦 𝑦 ∈ ∩ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}))) |
| 190 | 1, 25, 175, 189 | syl3c 66 |
. 2
⊢ (𝜑 → ∃𝑦 𝑦 ∈ ∩ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) |
| 191 | | lmrel 21034 |
. . 3
⊢ Rel
(⇝𝑡‘𝐽) |
| 192 | | r19.23v 3023 |
. . . . . 6
⊢
(∀𝑢 ∈
ran ℤ≥(𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ 𝑘) ↔ (∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ 𝑘)) |
| 193 | 192 | albii 1747 |
. . . . 5
⊢
(∀𝑘∀𝑢 ∈ ran ℤ≥(𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ 𝑘) ↔ ∀𝑘(∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ 𝑘)) |
| 194 | | fvex 6201 |
. . . . . . . 8
⊢
((cls‘𝐽)‘(𝐹 “ 𝑢)) ∈ V |
| 195 | | eleq2 2690 |
. . . . . . . 8
⊢ (𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → (𝑦 ∈ 𝑘 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 196 | 194, 195 | ceqsalv 3233 |
. . . . . . 7
⊢
(∀𝑘(𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ 𝑘) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 197 | 196 | ralbii 2980 |
. . . . . 6
⊢
(∀𝑢 ∈
ran ℤ≥∀𝑘(𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ 𝑘) ↔ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 198 | | ralcom4 3224 |
. . . . . 6
⊢
(∀𝑢 ∈
ran ℤ≥∀𝑘(𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ 𝑘) ↔ ∀𝑘∀𝑢 ∈ ran ℤ≥(𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ 𝑘)) |
| 199 | 197, 198 | bitr3i 266 |
. . . . 5
⊢
(∀𝑢 ∈
ran ℤ≥𝑦
∈ ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ ∀𝑘∀𝑢 ∈ ran ℤ≥(𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ 𝑘)) |
| 200 | | vex 3203 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 201 | 200 | elintab 4487 |
. . . . 5
⊢ (𝑦 ∈ ∩ {𝑘
∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ↔ ∀𝑘(∃𝑢 ∈ ran ℤ≥𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ 𝑘)) |
| 202 | 193, 199,
201 | 3bitr4i 292 |
. . . 4
⊢
(∀𝑢 ∈
ran ℤ≥𝑦
∈ ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ 𝑦 ∈ ∩ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) |
| 203 | | eqid 2622 |
. . . . . . . . . . 11
⊢
((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ ℕ)) |
| 204 | | imaeq2 5462 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = ℕ → (𝐹 “ 𝑢) = (𝐹 “ ℕ)) |
| 205 | 204 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑢 = ℕ →
((cls‘𝐽)‘(𝐹 “ 𝑢)) = ((cls‘𝐽)‘(𝐹 “ ℕ))) |
| 206 | 205 | eqeq2d 2632 |
. . . . . . . . . . . 12
⊢ (𝑢 = ℕ →
(((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ ℕ)))) |
| 207 | 206 | rspcev 3309 |
. . . . . . . . . . 11
⊢ ((ℕ
∈ ran ℤ≥ ∧ ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ ℕ))) → ∃𝑢 ∈ ran
ℤ≥((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 208 | 135, 203,
207 | mp2an 708 |
. . . . . . . . . 10
⊢
∃𝑢 ∈ ran
ℤ≥((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ 𝑢)) |
| 209 | | fvex 6201 |
. . . . . . . . . . 11
⊢
((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ V |
| 210 | | eqeq1 2626 |
. . . . . . . . . . . 12
⊢ (𝑘 = ((cls‘𝐽)‘(𝐹 “ ℕ)) → (𝑘 = ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ ((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 211 | 210 | rexbidv 3052 |
. . . . . . . . . . 11
⊢ (𝑘 = ((cls‘𝐽)‘(𝐹 “ ℕ)) → (∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ ∃𝑢 ∈ ran
ℤ≥((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ 𝑢)))) |
| 212 | 209, 211 | elab 3350 |
. . . . . . . . . 10
⊢
(((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ↔ ∃𝑢 ∈ ran
ℤ≥((cls‘𝐽)‘(𝐹 “ ℕ)) = ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 213 | 208, 212 | mpbir 221 |
. . . . . . . . 9
⊢
((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} |
| 214 | | intss1 4492 |
. . . . . . . . 9
⊢
(((cls‘𝐽)‘(𝐹 “ ℕ)) ∈ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} → ∩
{𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ⊆ ((cls‘𝐽)‘(𝐹 “ ℕ))) |
| 215 | 213, 214 | ax-mp 5 |
. . . . . . . 8
⊢ ∩ {𝑘
∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ⊆ ((cls‘𝐽)‘(𝐹 “ ℕ)) |
| 216 | | imassrn 5477 |
. . . . . . . . . . 11
⊢ (𝐹 “ ℕ) ⊆ ran
𝐹 |
| 217 | 216, 14 | syl5ss 3614 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 “ ℕ) ⊆ ∪ 𝐽) |
| 218 | 16 | clsss3 20863 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝐹 “ ℕ) ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ ∪ 𝐽) |
| 219 | 7, 217, 218 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ ∪ 𝐽) |
| 220 | 219, 13 | sseqtr4d 3642 |
. . . . . . . 8
⊢ (𝜑 → ((cls‘𝐽)‘(𝐹 “ ℕ)) ⊆ 𝑋) |
| 221 | 215, 220 | syl5ss 3614 |
. . . . . . 7
⊢ (𝜑 → ∩ {𝑘
∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))} ⊆ 𝑋) |
| 222 | 221 | sselda 3603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ∩ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) → 𝑦 ∈ 𝑋) |
| 223 | 202, 222 | sylan2b 492 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) → 𝑦 ∈ 𝑋) |
| 224 | | heibor1.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |
| 225 | | 1zzd 11408 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℤ) |
| 226 | 131, 4, 225 | iscau3 23076 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑦 ∈
ℝ+ ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦)))) |
| 227 | 224, 226 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑦 ∈
ℝ+ ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦))) |
| 228 | 227 | simprd 479 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑚 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦)) |
| 229 | | simp3 1063 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦) → ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦) |
| 230 | 229 | ralimi 2952 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
(ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦) → ∀𝑘 ∈ (ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦) |
| 231 | 230 | reximi 3011 |
. . . . . . . . . . 11
⊢
(∃𝑚 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦) → ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦) |
| 232 | 231 | ralimi 2952 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
ℝ+ ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦) → ∀𝑦 ∈ ℝ+ ∃𝑚 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦) |
| 233 | 228, 232 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑚 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦) |
| 234 | 233 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∀𝑦 ∈ ℝ+ ∃𝑚 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦) |
| 235 | | rphalfcl 11858 |
. . . . . . . 8
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ+) |
| 236 | | breq2 4657 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑟 / 2) → (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦 ↔ ((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2))) |
| 237 | 236 | 2ralbidv 2989 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑟 / 2) → (∀𝑘 ∈ (ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2))) |
| 238 | 237 | rexbidv 3052 |
. . . . . . . . 9
⊢ (𝑦 = (𝑟 / 2) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦 ↔ ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2))) |
| 239 | 238 | rspccva 3308 |
. . . . . . . 8
⊢
((∀𝑦 ∈
ℝ+ ∃𝑚 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < 𝑦 ∧ (𝑟 / 2) ∈ ℝ+) →
∃𝑚 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2)) |
| 240 | 234, 235,
239 | syl2an 494 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ 𝑟 ∈ ℝ+) →
∃𝑚 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2)) |
| 241 | | ffun 6048 |
. . . . . . . . . . . . 13
⊢ (𝐹:ℕ⟶𝑋 → Fun 𝐹) |
| 242 | 9, 241 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → Fun 𝐹) |
| 243 | 242 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → Fun
𝐹) |
| 244 | 7 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → 𝐽 ∈ Top) |
| 245 | | imassrn 5477 |
. . . . . . . . . . . . . 14
⊢ (𝐹 “
(ℤ≥‘𝑚)) ⊆ ran 𝐹 |
| 246 | 245, 14 | syl5ss 3614 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 “ (ℤ≥‘𝑚)) ⊆ ∪ 𝐽) |
| 247 | 246 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → (𝐹 “
(ℤ≥‘𝑚)) ⊆ ∪ 𝐽) |
| 248 | | nnz 11399 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
| 249 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . 15
⊢
((ℤ≥ Fn ℤ ∧ 𝑚 ∈ ℤ) →
(ℤ≥‘𝑚) ∈ ran
ℤ≥) |
| 250 | 58, 248, 249 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ →
(ℤ≥‘𝑚) ∈ ran
ℤ≥) |
| 251 | 250 | ad2antll 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) →
(ℤ≥‘𝑚) ∈ ran
ℤ≥) |
| 252 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) →
∀𝑢 ∈ ran
ℤ≥𝑦
∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) |
| 253 | | imaeq2 5462 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 =
(ℤ≥‘𝑚) → (𝐹 “ 𝑢) = (𝐹 “ (ℤ≥‘𝑚))) |
| 254 | 253 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 =
(ℤ≥‘𝑚) → ((cls‘𝐽)‘(𝐹 “ 𝑢)) = ((cls‘𝐽)‘(𝐹 “ (ℤ≥‘𝑚)))) |
| 255 | 254 | eleq2d 2687 |
. . . . . . . . . . . . . 14
⊢ (𝑢 =
(ℤ≥‘𝑚) → (𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢)) ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ≥‘𝑚))))) |
| 256 | 255 | rspcv 3305 |
. . . . . . . . . . . . 13
⊢
((ℤ≥‘𝑚) ∈ ran ℤ≥ →
(∀𝑢 ∈ ran
ℤ≥𝑦
∈ ((cls‘𝐽)‘(𝐹 “ 𝑢)) → 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ≥‘𝑚))))) |
| 257 | 251, 252,
256 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ≥‘𝑚)))) |
| 258 | 4 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 259 | 223 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → 𝑦 ∈ 𝑋) |
| 260 | 235 | ad2antrl 764 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → (𝑟 / 2) ∈
ℝ+) |
| 261 | 260 | rpxrd 11873 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → (𝑟 / 2) ∈
ℝ*) |
| 262 | 5 | blopn 22305 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ (𝑟 / 2) ∈ ℝ*) →
(𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽) |
| 263 | 258, 259,
261, 262 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → (𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽) |
| 264 | | blcntr 22218 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ (𝑟 / 2) ∈ ℝ+) →
𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) |
| 265 | 258, 259,
260, 264 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → 𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) |
| 266 | 16 | clsndisj 20879 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ (𝐹 “
(ℤ≥‘𝑚)) ⊆ ∪ 𝐽 ∧ 𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ (ℤ≥‘𝑚)))) ∧ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽 ∧ 𝑦 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚))) ≠
∅) |
| 267 | 244, 247,
257, 263, 265, 266 | syl32anc 1334 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) → ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚))) ≠
∅) |
| 268 | | n0 3931 |
. . . . . . . . . . . 12
⊢ (((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚))) ≠ ∅ ↔
∃𝑛 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚)))) |
| 269 | | inss2 3834 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚))) ⊆ (𝐹 “ (ℤ≥‘𝑚)) |
| 270 | 269 | sseli 3599 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚))) → 𝑛 ∈ (𝐹 “ (ℤ≥‘𝑚))) |
| 271 | | fvelima 6248 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ (𝐹 “ (ℤ≥‘𝑚))) → ∃𝑘 ∈
(ℤ≥‘𝑚)(𝐹‘𝑘) = 𝑛) |
| 272 | 270, 271 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚)))) → ∃𝑘 ∈
(ℤ≥‘𝑚)(𝐹‘𝑘) = 𝑛) |
| 273 | | inss1 3833 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚))) ⊆ (𝑦(ball‘𝐷)(𝑟 / 2)) |
| 274 | 273 | sseli 3599 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚))) → 𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) |
| 275 | 274 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚)))) → 𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) |
| 276 | | eleq1a 2696 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → ((𝐹‘𝑘) = 𝑛 → (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) |
| 277 | 275, 276 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚)))) → ((𝐹‘𝑘) = 𝑛 → (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) |
| 278 | 277 | reximdv 3016 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚)))) → (∃𝑘 ∈
(ℤ≥‘𝑚)(𝐹‘𝑘) = 𝑛 → ∃𝑘 ∈ (ℤ≥‘𝑚)(𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) |
| 279 | 272, 278 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚)))) → ∃𝑘 ∈
(ℤ≥‘𝑚)(𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) |
| 280 | 279 | ex 450 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → (𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚))) → ∃𝑘 ∈
(ℤ≥‘𝑚)(𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) |
| 281 | 280 | exlimdv 1861 |
. . . . . . . . . . . 12
⊢ (Fun
𝐹 → (∃𝑛 𝑛 ∈ ((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚))) → ∃𝑘 ∈
(ℤ≥‘𝑚)(𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) |
| 282 | 268, 281 | syl5bi 232 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (((𝑦(ball‘𝐷)(𝑟 / 2)) ∩ (𝐹 “ (ℤ≥‘𝑚))) ≠ ∅ →
∃𝑘 ∈
(ℤ≥‘𝑚)(𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) |
| 283 | 243, 267,
282 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) →
∃𝑘 ∈
(ℤ≥‘𝑚)(𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) |
| 284 | | r19.29 3072 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) ∧ ∃𝑘 ∈ (ℤ≥‘𝑚)(𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ (ℤ≥‘𝑚)(∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) |
| 285 | | uznnssnn 11735 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ →
(ℤ≥‘𝑚) ⊆ ℕ) |
| 286 | 285 | ad2antll 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) →
(ℤ≥‘𝑚) ⊆ ℕ) |
| 287 | | simprlr 803 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) |
| 288 | 4 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → 𝐷 ∈ (∞Met‘𝑋)) |
| 289 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → 𝑟 ∈ ℝ+) |
| 290 | 289, 235 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → (𝑟 / 2) ∈
ℝ+) |
| 291 | 290 | rpxrd 11873 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → (𝑟 / 2) ∈
ℝ*) |
| 292 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → 𝑦 ∈ 𝑋) |
| 293 | 9 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → 𝐹:ℕ⟶𝑋) |
| 294 | | eluznn 11758 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑚 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑚)) → 𝑘 ∈ ℕ) |
| 295 | 294 | ad2ant2lr 784 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑟 ∈ ℝ+
∧ 𝑚 ∈ ℕ)
∧ (𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → 𝑘 ∈ ℕ) |
| 296 | 295 | ad2ant2lr 784 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ ℕ) |
| 297 | 293, 296 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑘) ∈ 𝑋) |
| 298 | | elbl3 22197 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧
(𝑦 ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋)) → ((𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) ↔ ((𝐹‘𝑘)𝐷𝑦) < (𝑟 / 2))) |
| 299 | 288, 291,
292, 297, 298 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) ↔ ((𝐹‘𝑘)𝐷𝑦) < (𝑟 / 2))) |
| 300 | 287, 299 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((𝐹‘𝑘)𝐷𝑦) < (𝑟 / 2)) |
| 301 | 2 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → 𝐷 ∈ (Met‘𝑋)) |
| 302 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → 𝑛 ∈ (ℤ≥‘𝑘)) |
| 303 | | eluznn 11758 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑘)) → 𝑛 ∈ ℕ) |
| 304 | 296, 302,
303 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → 𝑛 ∈ ℕ) |
| 305 | 293, 304 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑛) ∈ 𝑋) |
| 306 | | metcl 22137 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 307 | 301, 297,
305, 306 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((𝐹‘𝑘)𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 308 | | metcl 22137 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝐹‘𝑘)𝐷𝑦) ∈ ℝ) |
| 309 | 301, 297,
292, 308 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((𝐹‘𝑘)𝐷𝑦) ∈ ℝ) |
| 310 | 290 | rpred 11872 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → (𝑟 / 2) ∈ ℝ) |
| 311 | | lt2add 10513 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐹‘𝑘)𝐷(𝐹‘𝑛)) ∈ ℝ ∧ ((𝐹‘𝑘)𝐷𝑦) ∈ ℝ) ∧ ((𝑟 / 2) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ)) →
((((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) ∧ ((𝐹‘𝑘)𝐷𝑦) < (𝑟 / 2)) → (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2)))) |
| 312 | 307, 309,
310, 310, 311 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) ∧ ((𝐹‘𝑘)𝐷𝑦) < (𝑟 / 2)) → (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2)))) |
| 313 | 300, 312 | mpan2d 710 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) → (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2)))) |
| 314 | 289 | rpcnd 11874 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → 𝑟 ∈ ℂ) |
| 315 | 314 | 2halvesd 11278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((𝑟 / 2) + (𝑟 / 2)) = 𝑟) |
| 316 | 315 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) < ((𝑟 / 2) + (𝑟 / 2)) ↔ (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) < 𝑟)) |
| 317 | 313, 316 | sylibd 229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) → (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) < 𝑟)) |
| 318 | | mettri2 22146 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑛)𝐷𝑦) ≤ (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦))) |
| 319 | 301, 297,
305, 292, 318 | syl13anc 1328 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((𝐹‘𝑛)𝐷𝑦) ≤ (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦))) |
| 320 | | metcl 22137 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑛) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝐹‘𝑛)𝐷𝑦) ∈ ℝ) |
| 321 | 301, 305,
292, 320 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((𝐹‘𝑛)𝐷𝑦) ∈ ℝ) |
| 322 | 307, 309 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) ∈ ℝ) |
| 323 | 289 | rpred 11872 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → 𝑟 ∈ ℝ) |
| 324 | | lelttr 10128 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑛)𝐷𝑦) ∈ ℝ ∧ (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹‘𝑛)𝐷𝑦) ≤ (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) ∧ (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) < 𝑟) → ((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 325 | 321, 322,
323, 324 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((((𝐹‘𝑛)𝐷𝑦) ≤ (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) ∧ (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) < 𝑟) → ((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 326 | 319, 325 | mpand 711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑛)) + ((𝐹‘𝑘)𝐷𝑦)) < 𝑟 → ((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 327 | 317, 326 | syld 47 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ ((𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) ∧ 𝑛 ∈ (ℤ≥‘𝑘))) → (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) → ((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 328 | 327 | anassrs 680 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ (𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) ∧ 𝑛 ∈ (ℤ≥‘𝑘)) → (((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) → ((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 329 | 328 | ralimdva 2962 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ (𝑘 ∈
(ℤ≥‘𝑚) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)))) → (∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) → ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 330 | 329 | expr 643 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈
(ℤ≥‘𝑚)) → ((𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → (∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) → ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟))) |
| 331 | 330 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈
(ℤ≥‘𝑚)) → (∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) → ((𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2)) → ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟))) |
| 332 | 331 | impd 447 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈
(ℤ≥‘𝑚)) → ((∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 333 | 332 | reximdva 3017 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) →
(∃𝑘 ∈
(ℤ≥‘𝑚)(∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ (ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 334 | | ssrexv 3667 |
. . . . . . . . . . . . 13
⊢
((ℤ≥‘𝑚) ⊆ ℕ → (∃𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟 → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 335 | 286, 333,
334 | sylsyld 61 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) →
(∃𝑘 ∈
(ℤ≥‘𝑚)(∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 336 | 223, 335 | syldanl 735 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) →
(∃𝑘 ∈
(ℤ≥‘𝑚)(∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) ∧ (𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 337 | 284, 336 | syl5 34 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) →
((∀𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) ∧ ∃𝑘 ∈ (ℤ≥‘𝑚)(𝐹‘𝑘) ∈ (𝑦(ball‘𝐷)(𝑟 / 2))) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 338 | 283, 337 | mpan2d 710 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ)) →
(∀𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 339 | 338 | anassrs 680 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ 𝑟 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) →
(∀𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 340 | 339 | rexlimdva 3031 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ 𝑟 ∈ ℝ+) →
(∃𝑚 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑚)∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑛)) < (𝑟 / 2) → ∃𝑘 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟)) |
| 341 | 240, 340 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) ∧ 𝑟 ∈ ℝ+) →
∃𝑘 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟) |
| 342 | 341 | ralrimiva 2966 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) → ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟) |
| 343 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = (𝐹‘𝑛)) |
| 344 | 5, 4, 131, 225, 343, 9 | lmmbrf 23060 |
. . . . . 6
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑦 ↔ (𝑦 ∈ 𝑋 ∧ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟))) |
| 345 | 344 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) → (𝐹(⇝𝑡‘𝐽)𝑦 ↔ (𝑦 ∈ 𝑋 ∧ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑘)((𝐹‘𝑛)𝐷𝑦) < 𝑟))) |
| 346 | 223, 342,
345 | mpbir2and 957 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑢 ∈ ran ℤ≥𝑦 ∈ ((cls‘𝐽)‘(𝐹 “ 𝑢))) → 𝐹(⇝𝑡‘𝐽)𝑦) |
| 347 | 202, 346 | sylan2br 493 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ∩ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) → 𝐹(⇝𝑡‘𝐽)𝑦) |
| 348 | | releldm 5358 |
. . 3
⊢ ((Rel
(⇝𝑡‘𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑦) → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |
| 349 | 191, 347,
348 | sylancr 695 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ ∩ {𝑘 ∣ ∃𝑢 ∈ ran
ℤ≥𝑘 =
((cls‘𝐽)‘(𝐹 “ 𝑢))}) → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |
| 350 | 190, 349 | exlimddv 1863 |
1
⊢ (𝜑 → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |