MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsndisj Structured version   Visualization version   Unicode version

Theorem clsndisj 20879
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsndisj  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J ) `  S ) )  /\  ( U  e.  J  /\  P  e.  U
) )  ->  ( U  i^i  S )  =/=  (/) )

Proof of Theorem clsndisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  ->  J  e.  Top )
2 simp2 1062 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  ->  S  C_  X
)
3 clscld.1 . . . . . 6  |-  X  = 
U. J
43clsss3 20863 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
54sseld 3602 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( cls `  J
) `  S )  ->  P  e.  X ) )
653impia 1261 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  ->  P  e.  X )
7 simp3 1063 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  ->  P  e.  ( ( cls `  J
) `  S )
)
83elcls 20877 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
98biimpa 501 . . 3  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )
101, 2, 6, 7, 9syl31anc 1329 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  ->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )
11 eleq2 2690 . . . . 5  |-  ( x  =  U  ->  ( P  e.  x  <->  P  e.  U ) )
12 ineq1 3807 . . . . . 6  |-  ( x  =  U  ->  (
x  i^i  S )  =  ( U  i^i  S ) )
1312neeq1d 2853 . . . . 5  |-  ( x  =  U  ->  (
( x  i^i  S
)  =/=  (/)  <->  ( U  i^i  S )  =/=  (/) ) )
1411, 13imbi12d 334 . . . 4  |-  ( x  =  U  ->  (
( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  <->  ( P  e.  U  ->  ( U  i^i  S )  =/=  (/) ) ) )
1514rspccv 3306 . . 3  |-  ( A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  ( U  e.  J  ->  ( P  e.  U  -> 
( U  i^i  S
)  =/=  (/) ) ) )
1615imp32 449 . 2  |-  ( ( A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  /\  ( U  e.  J  /\  P  e.  U
) )  ->  ( U  i^i  S )  =/=  (/) )
1710, 16sylan 488 1  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J ) `  S ) )  /\  ( U  e.  J  /\  P  e.  U
) )  ->  ( U  i^i  S )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   ` cfv 5888   Topctop 20698   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by:  neindisj  20921  clsconn  21233  txcls  21407  ptclsg  21418  flimsncls  21790  hauspwpwf1  21791  met2ndci  22327  metdseq0  22657  heibor1lem  33608
  Copyright terms: Public domain W3C validator