| Step | Hyp | Ref
| Expression |
| 1 | | simpll3 1102 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (𝐽 ↾t 𝐴) ∈ Conn) |
| 2 | | simpll1 1100 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | | simpll2 1101 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐴 ⊆ 𝑋) |
| 4 | | simplrl 800 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝑥 ∈ 𝐽) |
| 5 | | simplrr 801 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝑦 ∈ 𝐽) |
| 6 | | simprl1 1106 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅) |
| 7 | | n0 3931 |
. . . . . . . . 9
⊢ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) |
| 8 | 6, 7 | sylib 208 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) |
| 9 | 2 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 10 | | topontop 20718 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top) |
| 12 | 3 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 ⊆ 𝑋) |
| 13 | | toponuni 20719 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 14 | 9, 13 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = ∪ 𝐽) |
| 15 | 12, 14 | sseqtrd 3641 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 ⊆ ∪ 𝐽) |
| 16 | | inss2 3834 |
. . . . . . . . . 10
⊢ (𝑥 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐽)‘𝐴) |
| 17 | | simpr 477 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) |
| 18 | 16, 17 | sseldi 3601 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴)) |
| 19 | 4 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑥 ∈ 𝐽) |
| 20 | | inss1 3833 |
. . . . . . . . . 10
⊢ (𝑥 ∩ ((cls‘𝐽)‘𝐴)) ⊆ 𝑥 |
| 21 | 20, 17 | sseldi 3601 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ 𝑥) |
| 22 | | eqid 2622 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 23 | 22 | clsndisj 20879 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽
∧ 𝑧 ∈
((cls‘𝐽)‘𝐴)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑧 ∈ 𝑥)) → (𝑥 ∩ 𝐴) ≠ ∅) |
| 24 | 11, 15, 18, 19, 21, 23 | syl32anc 1334 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → (𝑥 ∩ 𝐴) ≠ ∅) |
| 25 | 8, 24 | exlimddv 1863 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑥 ∩ 𝐴) ≠ ∅) |
| 26 | | simprl2 1107 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅) |
| 27 | | n0 3931 |
. . . . . . . . 9
⊢ ((𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) |
| 28 | 26, 27 | sylib 208 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) |
| 29 | 2 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 30 | 29, 10 | syl 17 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top) |
| 31 | 3 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 ⊆ 𝑋) |
| 32 | 29, 13 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = ∪ 𝐽) |
| 33 | 31, 32 | sseqtrd 3641 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 ⊆ ∪ 𝐽) |
| 34 | | inss2 3834 |
. . . . . . . . . 10
⊢ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐽)‘𝐴) |
| 35 | | simpr 477 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) |
| 36 | 34, 35 | sseldi 3601 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴)) |
| 37 | 5 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑦 ∈ 𝐽) |
| 38 | | inss1 3833 |
. . . . . . . . . 10
⊢ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ⊆ 𝑦 |
| 39 | 38, 35 | sseldi 3601 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ 𝑦) |
| 40 | 22 | clsndisj 20879 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽
∧ 𝑧 ∈
((cls‘𝐽)‘𝐴)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑧 ∈ 𝑦)) → (𝑦 ∩ 𝐴) ≠ ∅) |
| 41 | 30, 33, 36, 37, 39, 40 | syl32anc 1334 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → (𝑦 ∩ 𝐴) ≠ ∅) |
| 42 | 28, 41 | exlimddv 1863 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑦 ∩ 𝐴) ≠ ∅) |
| 43 | | simprl3 1108 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) |
| 44 | 2, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐽 ∈ Top) |
| 45 | 2, 13 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝑋 = ∪ 𝐽) |
| 46 | 3, 45 | sseqtrd 3641 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐴 ⊆ ∪ 𝐽) |
| 47 | 22 | sscls 20860 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽)
→ 𝐴 ⊆
((cls‘𝐽)‘𝐴)) |
| 48 | 44, 46, 47 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
| 49 | 48 | sscond 3747 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑋 ∖ ((cls‘𝐽)‘𝐴)) ⊆ (𝑋 ∖ 𝐴)) |
| 50 | 43, 49 | sstrd 3613 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝐴)) |
| 51 | | ssv 3625 |
. . . . . . . . . 10
⊢ 𝑋 ⊆ V |
| 52 | | ssdif 3745 |
. . . . . . . . . 10
⊢ (𝑋 ⊆ V → (𝑋 ∖ 𝐴) ⊆ (V ∖ 𝐴)) |
| 53 | 51, 52 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑋 ∖ 𝐴) ⊆ (V ∖ 𝐴) |
| 54 | 50, 53 | syl6ss 3615 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑥 ∩ 𝑦) ⊆ (V ∖ 𝐴)) |
| 55 | | disj2 4024 |
. . . . . . . 8
⊢ (((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅ ↔ (𝑥 ∩ 𝑦) ⊆ (V ∖ 𝐴)) |
| 56 | 54, 55 | sylibr 224 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) |
| 57 | | simprr 796 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦)) |
| 58 | 48, 57 | sstrd 3613 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐴 ⊆ (𝑥 ∪ 𝑦)) |
| 59 | 2, 3, 4, 5, 25, 42, 56, 58 | nconnsubb 21226 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → ¬ (𝐽 ↾t 𝐴) ∈ Conn) |
| 60 | 59 | expr 643 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦) → ¬ (𝐽 ↾t 𝐴) ∈ Conn)) |
| 61 | 1, 60 | mt2d 131 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦)) |
| 62 | 61 | ex 450 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) |
| 63 | 62 | ralrimivva 2971 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) |
| 64 | | simp1 1061 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → 𝐽 ∈ (TopOn‘𝑋)) |
| 65 | 13 | sseq2d 3633 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ ∪ 𝐽)) |
| 66 | 65 | biimpa 501 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ 𝐽) |
| 67 | 22 | clsss3 20863 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝐴) ⊆ ∪ 𝐽) |
| 68 | 10, 67 | sylan 488 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝐴) ⊆ ∪ 𝐽) |
| 69 | 66, 68 | syldan 487 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ ∪ 𝐽) |
| 70 | 13 | adantr 481 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 = ∪ 𝐽) |
| 71 | 69, 70 | sseqtr4d 3642 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
| 72 | 71 | 3adant3 1081 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
| 73 | | connsub 21224 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝐴) ⊆ 𝑋) → ((𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦)))) |
| 74 | 64, 72, 73 | syl2anc 693 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → ((𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦)))) |
| 75 | 63, 74 | mpbird 247 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → (𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn) |