MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval2 Structured version   Visualization version   GIF version

Theorem clsval2 20854
Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsval2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))))

Proof of Theorem clsval2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2921 . . . . . 6 {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)}
2 clscld.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
32cldopn 20835 . . . . . . . . . . . 12 (𝑧 ∈ (Clsd‘𝐽) → (𝑋𝑧) ∈ 𝐽)
43ad2antrl 764 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ 𝐽)
5 sscon 3744 . . . . . . . . . . . . 13 (𝑆𝑧 → (𝑋𝑧) ⊆ (𝑋𝑆))
65ad2antll 765 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ⊆ (𝑋𝑆))
72topopn 20711 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → 𝑋𝐽)
8 difexg 4808 . . . . . . . . . . . . . 14 (𝑋𝐽 → (𝑋𝑧) ∈ V)
9 elpwg 4166 . . . . . . . . . . . . . 14 ((𝑋𝑧) ∈ V → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
107, 8, 93syl 18 . . . . . . . . . . . . 13 (𝐽 ∈ Top → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
1110ad2antrr 762 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
126, 11mpbird 247 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ 𝒫 (𝑋𝑆))
134, 12elind 3798 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)))
142cldss 20833 . . . . . . . . . . . . 13 (𝑧 ∈ (Clsd‘𝐽) → 𝑧𝑋)
1514ad2antrl 764 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → 𝑧𝑋)
16 dfss4 3858 . . . . . . . . . . . 12 (𝑧𝑋 ↔ (𝑋 ∖ (𝑋𝑧)) = 𝑧)
1715, 16sylib 208 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋 ∖ (𝑋𝑧)) = 𝑧)
1817eqcomd 2628 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → 𝑧 = (𝑋 ∖ (𝑋𝑧)))
19 difeq2 3722 . . . . . . . . . . . 12 (𝑥 = (𝑋𝑧) → (𝑋𝑥) = (𝑋 ∖ (𝑋𝑧)))
2019eqeq2d 2632 . . . . . . . . . . 11 (𝑥 = (𝑋𝑧) → (𝑧 = (𝑋𝑥) ↔ 𝑧 = (𝑋 ∖ (𝑋𝑧))))
2120rspcev 3309 . . . . . . . . . 10 (((𝑋𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) ∧ 𝑧 = (𝑋 ∖ (𝑋𝑧))) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥))
2213, 18, 21syl2anc 693 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥))
2322ex 450 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)))
24 simpl 473 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝐽 ∈ Top)
25 elin 3796 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) ↔ (𝑥𝐽𝑥 ∈ 𝒫 (𝑋𝑆)))
2625simplbi 476 . . . . . . . . . . . 12 (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → 𝑥𝐽)
272opncld 20837 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
2824, 26, 27syl2an 494 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑋𝑥) ∈ (Clsd‘𝐽))
2925simprbi 480 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → 𝑥 ∈ 𝒫 (𝑋𝑆))
3029adantl 482 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥 ∈ 𝒫 (𝑋𝑆))
3130elpwid 4170 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥 ⊆ (𝑋𝑆))
3231difss2d 3740 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥𝑋)
33 simplr 792 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑆𝑋)
34 ssconb 3743 . . . . . . . . . . . . 13 ((𝑥𝑋𝑆𝑋) → (𝑥 ⊆ (𝑋𝑆) ↔ 𝑆 ⊆ (𝑋𝑥)))
3532, 33, 34syl2anc 693 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑥 ⊆ (𝑋𝑆) ↔ 𝑆 ⊆ (𝑋𝑥)))
3631, 35mpbid 222 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑆 ⊆ (𝑋𝑥))
3728, 36jca 554 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → ((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥)))
38 eleq1 2689 . . . . . . . . . . 11 (𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ↔ (𝑋𝑥) ∈ (Clsd‘𝐽)))
39 sseq2 3627 . . . . . . . . . . 11 (𝑧 = (𝑋𝑥) → (𝑆𝑧𝑆 ⊆ (𝑋𝑥)))
4038, 39anbi12d 747 . . . . . . . . . 10 (𝑧 = (𝑋𝑥) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) ↔ ((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥))))
4137, 40syl5ibrcom 237 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)))
4241rexlimdva 3031 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)))
4323, 42impbid 202 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) ↔ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)))
4443abbidv 2741 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
451, 44syl5eq 2668 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
4645inteqd 4480 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
47 difexg 4808 . . . . . . 7 (𝑋𝐽 → (𝑋𝑥) ∈ V)
4847ralrimivw 2967 . . . . . 6 (𝑋𝐽 → ∀𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) ∈ V)
49 dfiin2g 4553 . . . . . 6 (∀𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) ∈ V → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
507, 48, 493syl 18 . . . . 5 (𝐽 ∈ Top → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
5150adantr 481 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
5246, 51eqtr4d 2659 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥))
532clsval 20841 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧})
54 uniiun 4573 . . . . . 6 (𝐽 ∩ 𝒫 (𝑋𝑆)) = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥
5554difeq2i 3725 . . . . 5 (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥)
5655a1i 11 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
57 0opn 20709 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
5857adantr 481 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ 𝐽)
59 0elpw 4834 . . . . . . 7 ∅ ∈ 𝒫 (𝑋𝑆)
6059a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ 𝒫 (𝑋𝑆))
6158, 60elind 3798 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)))
62 ne0i 3921 . . . . 5 (∅ ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → (𝐽 ∩ 𝒫 (𝑋𝑆)) ≠ ∅)
63 iindif2 4589 . . . . 5 ((𝐽 ∩ 𝒫 (𝑋𝑆)) ≠ ∅ → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
6461, 62, 633syl 18 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
6556, 64eqtr4d 2659 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥))
6652, 53, 653eqtr4d 2666 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))))
67 difssd 3738 . . . 4 (𝑆𝑋 → (𝑋𝑆) ⊆ 𝑋)
682ntrval 20840 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋𝑆)) = (𝐽 ∩ 𝒫 (𝑋𝑆)))
6967, 68sylan2 491 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘(𝑋𝑆)) = (𝐽 ∩ 𝒫 (𝑋𝑆)))
7069difeq2d 3728 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))) = (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))))
7166, 70eqtr4d 2659 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436   cint 4475   ciun 4520   ciin 4521  cfv 5888  Topctop 20698  Clsdccld 20820  intcnt 20821  clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by:  ntrval2  20855  clsdif  20857  cmclsopn  20866  bcth3  23128
  Copyright terms: Public domain W3C validator