![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmetmet | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
cmetmet | ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . 3 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
2 | 1 | iscmet 23082 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅)) |
3 | 2 | simplbi 476 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∅c0 3915 ‘cfv 5888 (class class class)co 6650 Metcme 19732 MetOpencmopn 19736 fLim cflim 21738 CauFilccfil 23050 CMetcms 23052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-cmet 23055 |
This theorem is referenced by: cmetmeti 23085 cmetcaulem 23086 cmetcau 23087 iscmet2 23092 cmetss 23113 bcthlem2 23122 bcthlem3 23123 bcthlem4 23124 bcthlem5 23125 bcth2 23127 bcth3 23128 cmetcusp1 23149 cmetcusp 23150 minveclem3 23200 ubthlem1 27726 ubthlem2 27727 hlmet 27751 fmcncfil 29977 heiborlem3 33612 heiborlem6 33615 heiborlem8 33617 heiborlem9 33618 heiborlem10 33619 heibor 33620 bfplem1 33621 bfplem2 33622 bfp 33623 |
Copyright terms: Public domain | W3C validator |