| Step | Hyp | Ref
| Expression |
| 1 | | cmetcau.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| 2 | | cmetmet 23084 |
. . . . . . . . 9
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| 3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 4 | | metxmet 22139 |
. . . . . . . 8
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 6 | | cmetcau.1 |
. . . . . . . 8
⊢ 𝐽 = (MetOpen‘𝐷) |
| 7 | 6 | mopntopon 22244 |
. . . . . . 7
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 8 | 5, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 9 | | 1z 11407 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
| 10 | | nnuz 11723 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 11 | 10 | uzfbas 21702 |
. . . . . . . 8
⊢ (1 ∈
ℤ → (ℤ≥ “ ℕ) ∈
(fBas‘ℕ)) |
| 12 | 9, 11 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → (ℤ≥
“ ℕ) ∈ (fBas‘ℕ)) |
| 13 | | fgcl 21682 |
. . . . . . 7
⊢
((ℤ≥ “ ℕ) ∈ (fBas‘ℕ)
→ (ℕfilGen(ℤ≥ “ ℕ)) ∈
(Fil‘ℕ)) |
| 14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(ℕfilGen(ℤ≥ “ ℕ)) ∈
(Fil‘ℕ)) |
| 15 | | elfvdm 6220 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet) |
| 16 | 1, 15 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ dom CMet) |
| 17 | | cnex 10017 |
. . . . . . . . . . . 12
⊢ ℂ
∈ V |
| 18 | 17 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℂ ∈
V) |
| 19 | | cmetcau.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |
| 20 | | caufpm 23080 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
| 21 | 5, 19, 20 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
| 22 | | elpm2g 7874 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ dom CMet ∧ ℂ
∈ V) → (𝐹 ∈
(𝑋
↑pm ℂ) ↔ (𝐹:dom 𝐹⟶𝑋 ∧ dom 𝐹 ⊆ ℂ))) |
| 23 | 22 | simprbda 653 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ dom CMet ∧ ℂ
∈ V) ∧ 𝐹 ∈
(𝑋
↑pm ℂ)) → 𝐹:dom 𝐹⟶𝑋) |
| 24 | 16, 18, 21, 23 | syl21anc 1325 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:dom 𝐹⟶𝑋) |
| 25 | 24 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → 𝐹:dom 𝐹⟶𝑋) |
| 26 | 25 | ffvelrnda 6359 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ 𝑋) |
| 27 | | cmetcau.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| 28 | 27 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑃 ∈ 𝑋) |
| 29 | 26, 28 | ifclda 4120 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → if(𝑥 ∈ dom 𝐹, (𝐹‘𝑥), 𝑃) ∈ 𝑋) |
| 30 | | cmetcau.6 |
. . . . . . 7
⊢ 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹‘𝑥), 𝑃)) |
| 31 | 29, 30 | fmptd 6385 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶𝑋) |
| 32 | | flfval 21794 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧
(ℕfilGen(ℤ≥ “ ℕ)) ∈
(Fil‘ℕ) ∧ 𝐺:ℕ⟶𝑋) → ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
= (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ≥
“ ℕ))))) |
| 33 | 8, 14, 31, 32 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
= (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ≥
“ ℕ))))) |
| 34 | | eqid 2622 |
. . . . . . . 8
⊢
(ℕfilGen(ℤ≥ “ ℕ)) =
(ℕfilGen(ℤ≥ “ ℕ)) |
| 35 | 34 | fmfg 21753 |
. . . . . . 7
⊢ ((𝑋 ∈ dom CMet ∧
(ℤ≥ “ ℕ) ∈ (fBas‘ℕ) ∧
𝐺:ℕ⟶𝑋) → ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) = ((𝑋 FilMap
𝐺)‘(ℕfilGen(ℤ≥
“ ℕ)))) |
| 36 | 16, 12, 31, 35 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) = ((𝑋 FilMap
𝐺)‘(ℕfilGen(ℤ≥
“ ℕ)))) |
| 37 | 36 | oveq2d 6666 |
. . . . 5
⊢ (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ))) = (𝐽 fLim
((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ≥
“ ℕ))))) |
| 38 | 33, 37 | eqtr4d 2659 |
. . . 4
⊢ (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
= (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)))) |
| 39 | | 1rp 11836 |
. . . . . . . 8
⊢ 1 ∈
ℝ+ |
| 40 | | 1zzd 11408 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℤ) |
| 41 | 10, 5, 40 | iscau3 23076 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑧 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧)))) |
| 42 | 41 | simplbda 654 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧)) |
| 43 | 19, 42 | mpdan 702 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧)) |
| 44 | | simp1 1061 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧) → 𝑘 ∈ dom 𝐹) |
| 45 | 44 | ralimi 2952 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧) → ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
| 46 | 45 | reximi 3011 |
. . . . . . . . . 10
⊢
(∃𝑗 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
| 47 | 46 | ralimi 2952 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
| 48 | 43, 47 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
| 49 | | biidd 252 |
. . . . . . . . 9
⊢ (𝑧 = 1 → (∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹)) |
| 50 | 49 | rspcv 3305 |
. . . . . . . 8
⊢ (1 ∈
ℝ+ → (∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹)) |
| 51 | 39, 48, 50 | mpsyl 68 |
. . . . . . 7
⊢ (𝜑 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
| 52 | | dfss3 3592 |
. . . . . . . . 9
⊢
((ℤ≥‘𝑗) ⊆ dom 𝐹 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
| 53 | | nnsscn 11025 |
. . . . . . . . . . . . . 14
⊢ ℕ
⊆ ℂ |
| 54 | 31, 53 | jctir 561 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆
ℂ)) |
| 55 | | elpm2r 7875 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ dom CMet ∧ ℂ
∈ V) ∧ (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆ ℂ)) →
𝐺 ∈ (𝑋 ↑pm
ℂ)) |
| 56 | 16, 18, 54, 55 | syl21anc 1325 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ (𝑋 ↑pm
ℂ)) |
| 57 | 56 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (𝑋 ↑pm
ℂ)) |
| 58 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑗) = (ℤ≥‘𝑗) |
| 59 | 5 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 60 | | nnz 11399 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
| 61 | 60 | ad2antrl 764 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℤ) |
| 62 | | eqidd 2623 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 63 | | eqidd 2623 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑚) = (𝐹‘𝑚)) |
| 64 | 58, 59, 61, 62, 63 | iscau4 23077 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑧 ∈
ℝ+ ∃𝑚 ∈ (ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)))) |
| 65 | 64 | simplbda 654 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)) |
| 66 | 19, 65 | mpidan 704 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)) |
| 67 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℕ) |
| 68 | | eluznn 11758 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘𝑗)) → 𝑚 ∈ ℕ) |
| 69 | 67, 68 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ ℕ) |
| 70 | | eluznn 11758 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑚)) → 𝑘 ∈ ℕ) |
| 71 | 30, 29 | dmmptd 6024 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → dom 𝐺 = ℕ) |
| 72 | 71 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → dom 𝐺 = ℕ) |
| 73 | 72 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → (𝑘 ∈ dom 𝐺 ↔ 𝑘 ∈ ℕ)) |
| 74 | 73 | biimpar 502 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ dom 𝐺) |
| 75 | 74 | a1d 25 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ dom 𝐹 → 𝑘 ∈ dom 𝐺)) |
| 76 | | idd 24 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) ∈ 𝑋 → (𝐹‘𝑘) ∈ 𝑋)) |
| 77 | | idd 24 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧 → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)) |
| 78 | 75, 76, 77 | 3anim123d 1406 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
| 79 | 70, 78 | sylan2 491 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑚))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
| 80 | 79 | anassrs 680 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
| 81 | 80 | ralimdva 2962 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
| 82 | 69, 81 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (∀𝑘 ∈
(ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
| 83 | 82 | reximdva 3017 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → (∃𝑚 ∈ (ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → ∃𝑚 ∈ (ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
| 84 | 83 | ralimdv 2963 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → (∀𝑧 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → ∀𝑧 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
| 85 | 66, 84 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)) |
| 86 | | eluznn 11758 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
| 87 | 67, 86 | sylan 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
| 88 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) →
(ℤ≥‘𝑗) ⊆ dom 𝐹) |
| 89 | 88 | sselda 3603 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ dom 𝐹) |
| 90 | | iftrue 4092 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ dom 𝐹 → if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃) = (𝐹‘𝑘)) |
| 91 | 90 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃) = (𝐹‘𝑘)) |
| 92 | | fvex 6201 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹‘𝑘) ∈ V |
| 93 | 91, 92 | syl6eqel 2709 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃) ∈ V) |
| 94 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → (𝑥 ∈ dom 𝐹 ↔ 𝑘 ∈ dom 𝐹)) |
| 95 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) |
| 96 | 94, 95 | ifbieq1d 4109 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑘 → if(𝑥 ∈ dom 𝐹, (𝐹‘𝑥), 𝑃) = if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃)) |
| 97 | 96, 30 | fvmptg 6280 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃) ∈ V) → (𝐺‘𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃)) |
| 98 | 93, 97 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺‘𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃)) |
| 99 | 98, 91 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
| 100 | 87, 89, 99 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
| 101 | 88 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ dom 𝐹) |
| 102 | 69, 101 | elind 3798 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ (ℕ ∩ dom 𝐹)) |
| 103 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → (𝐺‘𝑘) = (𝐺‘𝑚)) |
| 104 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
| 105 | 103, 104 | eqeq12d 2637 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → ((𝐺‘𝑘) = (𝐹‘𝑘) ↔ (𝐺‘𝑚) = (𝐹‘𝑚))) |
| 106 | | elin 3796 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (ℕ ∩ dom 𝐹) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹)) |
| 107 | 106, 99 | sylbi 207 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (ℕ ∩ dom 𝐹) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
| 108 | 105, 107 | vtoclga 3272 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (ℕ ∩ dom 𝐹) → (𝐺‘𝑚) = (𝐹‘𝑚)) |
| 109 | 102, 108 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝐺‘𝑚) = (𝐹‘𝑚)) |
| 110 | 58, 59, 61, 100, 109 | iscau4 23077 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → (𝐺 ∈ (Cau‘𝐷) ↔ (𝐺 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑧 ∈
ℝ+ ∃𝑚 ∈ (ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)))) |
| 111 | 57, 85, 110 | mpbir2and 957 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (Cau‘𝐷)) |
| 112 | 111 | expr 643 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
((ℤ≥‘𝑗) ⊆ dom 𝐹 → 𝐺 ∈ (Cau‘𝐷))) |
| 113 | 52, 112 | syl5bir 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 → 𝐺 ∈ (Cau‘𝐷))) |
| 114 | 113 | rexlimdva 3031 |
. . . . . . 7
⊢ (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 → 𝐺 ∈ (Cau‘𝐷))) |
| 115 | 51, 114 | mpd 15 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ (Cau‘𝐷)) |
| 116 | | eqid 2622 |
. . . . . . . 8
⊢ ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) = ((𝑋 FilMap
𝐺)‘(ℤ≥ “
ℕ)) |
| 117 | 10, 116 | caucfil 23081 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℤ ∧
𝐺:ℕ⟶𝑋) → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) ∈ (CauFil‘𝐷))) |
| 118 | 5, 40, 31, 117 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) ∈ (CauFil‘𝐷))) |
| 119 | 115, 118 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) ∈ (CauFil‘𝐷)) |
| 120 | 6 | cmetcvg 23083 |
. . . . 5
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) ∈ (CauFil‘𝐷)) → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ))) ≠ ∅) |
| 121 | 1, 119, 120 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ))) ≠ ∅) |
| 122 | 38, 121 | eqnetrd 2861 |
. . 3
⊢ (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
≠ ∅) |
| 123 | | n0 3931 |
. . 3
⊢ (((𝐽 fLimf
(ℕfilGen(ℤ≥ “ ℕ)))‘𝐺) ≠ ∅ ↔
∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)) |
| 124 | 122, 123 | sylib 208 |
. 2
⊢ (𝜑 → ∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)) |
| 125 | 10, 34 | lmflf 21809 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 1 ∈ ℤ ∧
𝐺:ℕ⟶𝑋) → (𝐺(⇝𝑡‘𝐽)𝑦 ↔ 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺))) |
| 126 | 8, 40, 31, 125 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → (𝐺(⇝𝑡‘𝐽)𝑦 ↔ 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺))) |
| 127 | 21 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
| 128 | | lmcl 21101 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝑦 ∈ 𝑋) |
| 129 | 8, 128 | sylan 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝑦 ∈ 𝑋) |
| 130 | 6, 5, 10, 40 | lmmbr3 23058 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺(⇝𝑡‘𝐽)𝑦 ↔ (𝐺 ∈ (𝑋 ↑pm ℂ) ∧
𝑦 ∈ 𝑋 ∧ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)))) |
| 131 | 130 | biimpa 501 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → (𝐺 ∈ (𝑋 ↑pm ℂ) ∧
𝑦 ∈ 𝑋 ∧ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) |
| 132 | 131 | simp3d 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) |
| 133 | | r19.26 3064 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) ↔ (∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) |
| 134 | 10 | rexanuz2 14089 |
. . . . . . . . . . . . 13
⊢
(∃𝑗 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) |
| 135 | | simprl 794 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → 𝑘 ∈ dom 𝐹) |
| 136 | 99 | ad2ant2lr 784 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
| 137 | | simprr2 1110 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → (𝐺‘𝑘) ∈ 𝑋) |
| 138 | 136, 137 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → (𝐹‘𝑘) ∈ 𝑋) |
| 139 | 136 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → ((𝐺‘𝑘)𝐷𝑦) = ((𝐹‘𝑘)𝐷𝑦)) |
| 140 | | simprr3 1111 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → ((𝐺‘𝑘)𝐷𝑦) < 𝑧) |
| 141 | 139, 140 | eqbrtrrd 4677 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → ((𝐹‘𝑘)𝐷𝑦) < 𝑧) |
| 142 | 135, 138,
141 | 3jca 1242 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧)) |
| 143 | 142 | ex 450 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
| 144 | 86, 143 | sylan2 491 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
| 145 | 144 | anassrs 680 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
| 146 | 145 | ralimdva 2962 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
| 147 | 146 | reximdva 3017 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
| 148 | 134, 147 | syl5bir 233 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
| 149 | 148 | ralimdv 2963 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
(∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
| 150 | 133, 149 | syl5bir 233 |
. . . . . . . . . 10
⊢ (𝜑 → ((∀𝑧 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
| 151 | 48, 150 | mpand 711 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
| 152 | 151 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → (∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
| 153 | 132, 152 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧)) |
| 154 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝐷 ∈ (∞Met‘𝑋)) |
| 155 | | 1zzd 11408 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 1 ∈ ℤ) |
| 156 | 6, 154, 10, 155 | lmmbr3 23058 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → (𝐹(⇝𝑡‘𝐽)𝑦 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑦 ∈ 𝑋 ∧ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧)))) |
| 157 | 127, 129,
153, 156 | mpbir3and 1245 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝐹(⇝𝑡‘𝐽)𝑦) |
| 158 | | lmrel 21034 |
. . . . . . 7
⊢ Rel
(⇝𝑡‘𝐽) |
| 159 | 158 | releldmi 5362 |
. . . . . 6
⊢ (𝐹(⇝𝑡‘𝐽)𝑦 → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |
| 160 | 157, 159 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |
| 161 | 160 | ex 450 |
. . . 4
⊢ (𝜑 → (𝐺(⇝𝑡‘𝐽)𝑦 → 𝐹 ∈ dom
(⇝𝑡‘𝐽))) |
| 162 | 126, 161 | sylbird 250 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
→ 𝐹 ∈ dom
(⇝𝑡‘𝐽))) |
| 163 | 162 | exlimdv 1861 |
. 2
⊢ (𝜑 → (∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
→ 𝐹 ∈ dom
(⇝𝑡‘𝐽))) |
| 164 | 124, 163 | mpd 15 |
1
⊢ (𝜑 → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |