![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem9 | Structured version Visualization version GIF version |
Description: Lemma for heibor 33620. Discharge the hypotheses of heiborlem8 33617 by applying caubl 23106 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.) |
Ref | Expression |
---|---|
heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
heibor.13 | ⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
heiborlem9.14 | ⊢ (𝜑 → ∪ 𝑈 = 𝑋) |
Ref | Expression |
---|---|
heiborlem9 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | heibor.6 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
2 | cmetmet 23084 | . . . . . . 7 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
3 | metxmet 22139 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
4 | 1, 2, 3 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
5 | heibor.1 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
6 | 5 | mopntopon 22244 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
8 | heibor.3 | . . . . . . . . 9 ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} | |
9 | heibor.4 | . . . . . . . . 9 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
10 | heibor.5 | . . . . . . . . 9 ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) | |
11 | heibor.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) | |
12 | heibor.8 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) | |
13 | heibor.9 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | |
14 | heibor.10 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶𝐺0) | |
15 | heibor.11 | . . . . . . . . 9 ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) | |
16 | heibor.12 | . . . . . . . . 9 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
17 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem5 33614 | . . . . . . . 8 ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
18 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem6 33615 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) |
19 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem7 33616 | . . . . . . . . 9 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
20 | 19 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟) |
21 | 4, 17, 18, 20 | caubl 23106 | . . . . . . 7 ⊢ (𝜑 → (1st ∘ 𝑀) ∈ (Cau‘𝐷)) |
22 | 5 | cmetcau 23087 | . . . . . . 7 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (1st ∘ 𝑀) ∈ (Cau‘𝐷)) → (1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽)) |
23 | 1, 21, 22 | syl2anc 693 | . . . . . 6 ⊢ (𝜑 → (1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽)) |
24 | 5 | methaus 22325 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
25 | 4, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Haus) |
26 | lmfun 21185 | . . . . . . 7 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
27 | funfvbrb 6330 | . . . . . . 7 ⊢ (Fun (⇝𝑡‘𝐽) → ((1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽) ↔ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)))) | |
28 | 25, 26, 27 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽) ↔ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)))) |
29 | 23, 28 | mpbid 222 | . . . . 5 ⊢ (𝜑 → (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) |
30 | lmcl 21101 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑋) | |
31 | 7, 29, 30 | syl2anc 693 | . . . 4 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑋) |
32 | heiborlem9.14 | . . . 4 ⊢ (𝜑 → ∪ 𝑈 = 𝑋) | |
33 | 31, 32 | eleqtrrd 2704 | . . 3 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ ∪ 𝑈) |
34 | eluni2 4440 | . . 3 ⊢ (((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ ∪ 𝑈 ↔ ∃𝑡 ∈ 𝑈 ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) | |
35 | 33, 34 | sylib 208 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝑈 ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) |
36 | 1 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐷 ∈ (CMet‘𝑋)) |
37 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
38 | 12 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
39 | 13 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
40 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐶𝐺0) |
41 | heibor.13 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ 𝐽) | |
42 | 41 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝑈 ⊆ 𝐽) |
43 | fvex 6201 | . . 3 ⊢ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ V | |
44 | simprr 796 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) | |
45 | simprl 794 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝑡 ∈ 𝑈) | |
46 | 29 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) |
47 | 5, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46 | heiborlem8 33617 | . 2 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝜓) |
48 | 35, 47 | rexlimddv 3035 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {cab 2608 ∀wral 2912 ∃wrex 2913 ∩ cin 3573 ⊆ wss 3574 ifcif 4086 𝒫 cpw 4158 〈cop 4183 ∪ cuni 4436 ∪ ciun 4520 class class class wbr 4653 {copab 4712 ↦ cmpt 4729 dom cdm 5114 ∘ ccom 5118 Fun wfun 5882 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 1st c1st 7166 2nd c2nd 7167 Fincfn 7955 0cc0 9936 1c1 9937 + caddc 9939 < clt 10074 − cmin 10266 / cdiv 10684 ℕcn 11020 2c2 11070 3c3 11071 ℕ0cn0 11292 ℝ+crp 11832 seqcseq 12801 ↑cexp 12860 ∞Metcxmt 19731 Metcme 19732 ballcbl 19733 MetOpencmopn 19736 TopOnctopon 20715 ⇝𝑡clm 21030 Hauscha 21112 Caucca 23051 CMetcms 23052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-icc 12182 df-fl 12593 df-seq 12802 df-exp 12861 df-rest 16083 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lm 21033 df-haus 21119 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-cfil 23053 df-cau 23054 df-cmet 23055 |
This theorem is referenced by: heiborlem10 33619 |
Copyright terms: Public domain | W3C validator |