Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem8 Structured version   Visualization version   GIF version

Theorem heiborlem8 33617
Description: Lemma for heibor 33620. The previous lemmas establish that the sequence 𝑀 is Cauchy, so using completeness we now consider the convergent point 𝑌. By assumption, 𝑈 is an open cover, so 𝑌 is an element of some 𝑍𝑈, and some ball centered at 𝑌 is contained in 𝑍. But the sequence contains arbitrarily small balls close to 𝑌, so some element ball(𝑀𝑛) of the sequence is contained in 𝑍. And finally we arrive at a contradiction, because {𝑍} is a finite subcover of 𝑈 that covers ball(𝑀𝑛), yet ball(𝑀𝑛) ∈ 𝐾. For convenience, we write this contradiction as 𝜑𝜓 where 𝜑 is all the accumulated hypotheses and 𝜓 is anything at all. (Contributed by Jeff Madsen, 22-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
heibor.13 (𝜑𝑈𝐽)
heibor.14 𝑌 ∈ V
heibor.15 (𝜑𝑌𝑍)
heibor.16 (𝜑𝑍𝑈)
heibor.17 (𝜑 → (1st𝑀)(⇝𝑡𝐽)𝑌)
Assertion
Ref Expression
heiborlem8 (𝜑𝜓)
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑚,𝑀,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝜓,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝑌   𝑣,𝑍,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝜓(𝑥,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)   𝑀(𝑣,𝑛)   𝑌(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝑍(𝑦,𝑧,𝑢,𝑚,𝑛)

Proof of Theorem heiborlem8
Dummy variables 𝑡 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.6 . . . 4 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 23084 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
3 metxmet 22139 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
41, 2, 33syl 18 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 heibor.13 . . . 4 (𝜑𝑈𝐽)
6 heibor.16 . . . 4 (𝜑𝑍𝑈)
75, 6sseldd 3604 . . 3 (𝜑𝑍𝐽)
8 heibor.15 . . 3 (𝜑𝑌𝑍)
9 heibor.1 . . . 4 𝐽 = (MetOpen‘𝐷)
109mopni2 22298 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑍𝐽𝑌𝑍) → ∃𝑥 ∈ ℝ+ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍)
114, 7, 8, 10syl3anc 1326 . 2 (𝜑 → ∃𝑥 ∈ ℝ+ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍)
12 rphalfcl 11858 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
13 breq2 4657 . . . . . . . 8 (𝑟 = (𝑥 / 2) → ((2nd ‘(𝑀𝑘)) < 𝑟 ↔ (2nd ‘(𝑀𝑘)) < (𝑥 / 2)))
1413rexbidv 3052 . . . . . . 7 (𝑟 = (𝑥 / 2) → (∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < (𝑥 / 2)))
15 heibor.3 . . . . . . . 8 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
16 heibor.4 . . . . . . . 8 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
17 heibor.5 . . . . . . . 8 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
18 heibor.7 . . . . . . . 8 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
19 heibor.8 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
20 heibor.9 . . . . . . . 8 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
21 heibor.10 . . . . . . . 8 (𝜑𝐶𝐺0)
22 heibor.11 . . . . . . . 8 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
23 heibor.12 . . . . . . . 8 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
249, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23heiborlem7 33616 . . . . . . 7 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
2514, 24vtoclri 3283 . . . . . 6 ((𝑥 / 2) ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))
2612, 25syl 17 . . . . 5 (𝑥 ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))
2726adantl 482 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))
28 nnnn0 11299 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
299, 15, 16, 17, 1, 18, 19, 20, 21, 22heiborlem4 33613 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘)𝐺𝑘)
30 fvex 6201 . . . . . . . . . 10 (𝑆𝑘) ∈ V
31 vex 3203 . . . . . . . . . 10 𝑘 ∈ V
329, 15, 16, 30, 31heiborlem2 33611 . . . . . . . . 9 ((𝑆𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆𝑘) ∈ (𝐹𝑘) ∧ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
3332simp3bi 1078 . . . . . . . 8 ((𝑆𝑘)𝐺𝑘 → ((𝑆𝑘)𝐵𝑘) ∈ 𝐾)
3429, 33syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐵𝑘) ∈ 𝐾)
3528, 34sylan2 491 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑆𝑘)𝐵𝑘) ∈ 𝐾)
3635ad2ant2r 783 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((𝑆𝑘)𝐵𝑘) ∈ 𝐾)
374ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → 𝐷 ∈ (∞Met‘𝑋))
389, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23heiborlem5 33614 . . . . . . . . . . . . 13 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
3938ffvelrnda 6359 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑀𝑘) ∈ (𝑋 × ℝ+))
4039ad2ant2r 783 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (𝑀𝑘) ∈ (𝑋 × ℝ+))
41 xp1st 7198 . . . . . . . . . . 11 ((𝑀𝑘) ∈ (𝑋 × ℝ+) → (1st ‘(𝑀𝑘)) ∈ 𝑋)
4240, 41syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (1st ‘(𝑀𝑘)) ∈ 𝑋)
43 2nn 11185 . . . . . . . . . . . . . . 15 2 ∈ ℕ
44 nnexpcl 12873 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
4543, 28, 44sylancr 695 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℕ)
4645nnrpd 11870 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℝ+)
4746rpreccld 11882 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ∈ ℝ+)
4847ad2antrl 764 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ∈ ℝ+)
4948rpxrd 11873 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ∈ ℝ*)
50 xp2nd 7199 . . . . . . . . . . . 12 ((𝑀𝑘) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑀𝑘)) ∈ ℝ+)
5140, 50syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀𝑘)) ∈ ℝ+)
5251rpxrd 11873 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀𝑘)) ∈ ℝ*)
53 1le3 11244 . . . . . . . . . . . . . 14 1 ≤ 3
54 elrp 11834 . . . . . . . . . . . . . . 15 ((2↑𝑘) ∈ ℝ+ ↔ ((2↑𝑘) ∈ ℝ ∧ 0 < (2↑𝑘)))
55 1re 10039 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
56 3re 11094 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
57 lediv1 10888 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ ((2↑𝑘) ∈ ℝ ∧ 0 < (2↑𝑘))) → (1 ≤ 3 ↔ (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘))))
5855, 56, 57mp3an12 1414 . . . . . . . . . . . . . . 15 (((2↑𝑘) ∈ ℝ ∧ 0 < (2↑𝑘)) → (1 ≤ 3 ↔ (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘))))
5954, 58sylbi 207 . . . . . . . . . . . . . 14 ((2↑𝑘) ∈ ℝ+ → (1 ≤ 3 ↔ (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘))))
6053, 59mpbii 223 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℝ+ → (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘)))
6146, 60syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘)))
6261ad2antrl 764 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘)))
63 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
64 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
6564oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘)))
6663, 65opeq12d 4410 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
67 opex 4932 . . . . . . . . . . . . . . 15 ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩ ∈ V
6866, 23, 67fvmpt 6282 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑀𝑘) = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
6968fveq2d 6195 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
70 ovex 6678 . . . . . . . . . . . . . 14 (3 / (2↑𝑘)) ∈ V
7130, 70op2nd 7177 . . . . . . . . . . . . 13 (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩) = (3 / (2↑𝑘))
7269, 71syl6eq 2672 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (3 / (2↑𝑘)))
7372ad2antrl 764 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀𝑘)) = (3 / (2↑𝑘)))
7462, 73breqtrrd 4681 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ≤ (2nd ‘(𝑀𝑘)))
75 ssbl 22228 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑀𝑘)) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (2nd ‘(𝑀𝑘)) ∈ ℝ*) ∧ (1 / (2↑𝑘)) ≤ (2nd ‘(𝑀𝑘))) → ((1st ‘(𝑀𝑘))(ball‘𝐷)(1 / (2↑𝑘))) ⊆ ((1st ‘(𝑀𝑘))(ball‘𝐷)(2nd ‘(𝑀𝑘))))
7637, 42, 49, 52, 74, 75syl221anc 1337 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀𝑘))(ball‘𝐷)(1 / (2↑𝑘))) ⊆ ((1st ‘(𝑀𝑘))(ball‘𝐷)(2nd ‘(𝑀𝑘))))
7728ad2antrl 764 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → 𝑘 ∈ ℕ0)
78 oveq1 6657 . . . . . . . . . . . 12 (𝑧 = (1st ‘(𝑀𝑘)) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((1st ‘(𝑀𝑘))(ball‘𝐷)(1 / (2↑𝑚))))
79 oveq2 6658 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘))
8079oveq2d 6666 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (1 / (2↑𝑚)) = (1 / (2↑𝑘)))
8180oveq2d 6666 . . . . . . . . . . . 12 (𝑚 = 𝑘 → ((1st ‘(𝑀𝑘))(ball‘𝐷)(1 / (2↑𝑚))) = ((1st ‘(𝑀𝑘))(ball‘𝐷)(1 / (2↑𝑘))))
82 ovex 6678 . . . . . . . . . . . 12 ((1st ‘(𝑀𝑘))(ball‘𝐷)(1 / (2↑𝑘))) ∈ V
8378, 81, 17, 82ovmpt2 6796 . . . . . . . . . . 11 (((1st ‘(𝑀𝑘)) ∈ 𝑋𝑘 ∈ ℕ0) → ((1st ‘(𝑀𝑘))𝐵𝑘) = ((1st ‘(𝑀𝑘))(ball‘𝐷)(1 / (2↑𝑘))))
8442, 77, 83syl2anc 693 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀𝑘))𝐵𝑘) = ((1st ‘(𝑀𝑘))(ball‘𝐷)(1 / (2↑𝑘))))
8568fveq2d 6195 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1st ‘(𝑀𝑘)) = (1st ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
8630, 70op1st 7176 . . . . . . . . . . . . 13 (1st ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩) = (𝑆𝑘)
8785, 86syl6eq 2672 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1st ‘(𝑀𝑘)) = (𝑆𝑘))
8887ad2antrl 764 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (1st ‘(𝑀𝑘)) = (𝑆𝑘))
8988oveq1d 6665 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀𝑘))𝐵𝑘) = ((𝑆𝑘)𝐵𝑘))
9084, 89eqtr3d 2658 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀𝑘))(ball‘𝐷)(1 / (2↑𝑘))) = ((𝑆𝑘)𝐵𝑘))
91 1st2nd2 7205 . . . . . . . . . . . 12 ((𝑀𝑘) ∈ (𝑋 × ℝ+) → (𝑀𝑘) = ⟨(1st ‘(𝑀𝑘)), (2nd ‘(𝑀𝑘))⟩)
9240, 91syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (𝑀𝑘) = ⟨(1st ‘(𝑀𝑘)), (2nd ‘(𝑀𝑘))⟩)
9392fveq2d 6195 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀𝑘)) = ((ball‘𝐷)‘⟨(1st ‘(𝑀𝑘)), (2nd ‘(𝑀𝑘))⟩))
94 df-ov 6653 . . . . . . . . . 10 ((1st ‘(𝑀𝑘))(ball‘𝐷)(2nd ‘(𝑀𝑘))) = ((ball‘𝐷)‘⟨(1st ‘(𝑀𝑘)), (2nd ‘(𝑀𝑘))⟩)
9593, 94syl6reqr 2675 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀𝑘))(ball‘𝐷)(2nd ‘(𝑀𝑘))) = ((ball‘𝐷)‘(𝑀𝑘)))
9676, 90, 953sstr3d 3647 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((𝑆𝑘)𝐵𝑘) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
979mopntop 22245 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
9837, 97syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → 𝐽 ∈ Top)
99 blssm 22223 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑀𝑘)) ∈ 𝑋 ∧ (2nd ‘(𝑀𝑘)) ∈ ℝ*) → ((1st ‘(𝑀𝑘))(ball‘𝐷)(2nd ‘(𝑀𝑘))) ⊆ 𝑋)
10037, 42, 52, 99syl3anc 1326 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀𝑘))(ball‘𝐷)(2nd ‘(𝑀𝑘))) ⊆ 𝑋)
1019mopnuni 22246 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
10237, 101syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → 𝑋 = 𝐽)
103100, 95, 1023sstr3d 3647 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀𝑘)) ⊆ 𝐽)
104 eqid 2622 . . . . . . . . . . 11 𝐽 = 𝐽
105104sscls 20860 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ((ball‘𝐷)‘(𝑀𝑘)) ⊆ 𝐽) → ((ball‘𝐷)‘(𝑀𝑘)) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀𝑘))))
10698, 103, 105syl2anc 693 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀𝑘)) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀𝑘))))
10795fveq2d 6195 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((1st ‘(𝑀𝑘))(ball‘𝐷)(2nd ‘(𝑀𝑘)))) = ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀𝑘))))
10812ad2antlr 763 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (𝑥 / 2) ∈ ℝ+)
109108rpxrd 11873 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (𝑥 / 2) ∈ ℝ*)
110 simprr 796 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀𝑘)) < (𝑥 / 2))
1119blsscls 22312 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑀𝑘)) ∈ 𝑋) ∧ ((2nd ‘(𝑀𝑘)) ∈ ℝ* ∧ (𝑥 / 2) ∈ ℝ* ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((1st ‘(𝑀𝑘))(ball‘𝐷)(2nd ‘(𝑀𝑘)))) ⊆ ((1st ‘(𝑀𝑘))(ball‘𝐷)(𝑥 / 2)))
11237, 42, 52, 109, 110, 111syl23anc 1333 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((1st ‘(𝑀𝑘))(ball‘𝐷)(2nd ‘(𝑀𝑘)))) ⊆ ((1st ‘(𝑀𝑘))(ball‘𝐷)(𝑥 / 2)))
113107, 112eqsstr3d 3640 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀𝑘))) ⊆ ((1st ‘(𝑀𝑘))(ball‘𝐷)(𝑥 / 2)))
114 rpre 11839 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
115114ad2antlr 763 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → 𝑥 ∈ ℝ)
116 heibor.17 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝑀)(⇝𝑡𝐽)𝑌)
1179, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23heiborlem6 33615 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑡 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑡 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑡)))
1184, 38, 117, 9caublcls 23107 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (1st𝑀)(⇝𝑡𝐽)𝑌𝑘 ∈ ℕ) → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀𝑘))))
1191183expia 1267 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (1st𝑀)(⇝𝑡𝐽)𝑌) → (𝑘 ∈ ℕ → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀𝑘)))))
120116, 119mpdan 702 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ ℕ → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀𝑘)))))
121120imp 445 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀𝑘))))
122121ad2ant2r 783 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀𝑘))))
123113, 122sseldd 3604 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → 𝑌 ∈ ((1st ‘(𝑀𝑘))(ball‘𝐷)(𝑥 / 2)))
124 blhalf 22210 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑀𝑘)) ∈ 𝑋) ∧ (𝑥 ∈ ℝ ∧ 𝑌 ∈ ((1st ‘(𝑀𝑘))(ball‘𝐷)(𝑥 / 2)))) → ((1st ‘(𝑀𝑘))(ball‘𝐷)(𝑥 / 2)) ⊆ (𝑌(ball‘𝐷)𝑥))
12537, 42, 115, 123, 124syl22anc 1327 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀𝑘))(ball‘𝐷)(𝑥 / 2)) ⊆ (𝑌(ball‘𝐷)𝑥))
126113, 125sstrd 3613 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀𝑘))) ⊆ (𝑌(ball‘𝐷)𝑥))
127106, 126sstrd 3613 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀𝑘)) ⊆ (𝑌(ball‘𝐷)𝑥))
12896, 127sstrd 3613 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((𝑆𝑘)𝐵𝑘) ⊆ (𝑌(ball‘𝐷)𝑥))
129 sstr2 3610 . . . . . . 7 (((𝑆𝑘)𝐵𝑘) ⊆ (𝑌(ball‘𝐷)𝑥) → ((𝑌(ball‘𝐷)𝑥) ⊆ 𝑍 → ((𝑆𝑘)𝐵𝑘) ⊆ 𝑍))
130128, 129syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((𝑌(ball‘𝐷)𝑥) ⊆ 𝑍 → ((𝑆𝑘)𝐵𝑘) ⊆ 𝑍))
131 unisng 4452 . . . . . . . . . . . . 13 (𝑍𝑈 {𝑍} = 𝑍)
1326, 131syl 17 . . . . . . . . . . . 12 (𝜑 {𝑍} = 𝑍)
133132sseq2d 3633 . . . . . . . . . . 11 (𝜑 → (((𝑆𝑘)𝐵𝑘) ⊆ {𝑍} ↔ ((𝑆𝑘)𝐵𝑘) ⊆ 𝑍))
134133biimpar 502 . . . . . . . . . 10 ((𝜑 ∧ ((𝑆𝑘)𝐵𝑘) ⊆ 𝑍) → ((𝑆𝑘)𝐵𝑘) ⊆ {𝑍})
1356snssd 4340 . . . . . . . . . . . . 13 (𝜑 → {𝑍} ⊆ 𝑈)
136 snex 4908 . . . . . . . . . . . . . 14 {𝑍} ∈ V
137136elpw 4164 . . . . . . . . . . . . 13 ({𝑍} ∈ 𝒫 𝑈 ↔ {𝑍} ⊆ 𝑈)
138135, 137sylibr 224 . . . . . . . . . . . 12 (𝜑 → {𝑍} ∈ 𝒫 𝑈)
139 snfi 8038 . . . . . . . . . . . . 13 {𝑍} ∈ Fin
140139a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑍} ∈ Fin)
141138, 140elind 3798 . . . . . . . . . . 11 (𝜑 → {𝑍} ∈ (𝒫 𝑈 ∩ Fin))
142 unieq 4444 . . . . . . . . . . . . 13 (𝑣 = {𝑍} → 𝑣 = {𝑍})
143142sseq2d 3633 . . . . . . . . . . . 12 (𝑣 = {𝑍} → (((𝑆𝑘)𝐵𝑘) ⊆ 𝑣 ↔ ((𝑆𝑘)𝐵𝑘) ⊆ {𝑍}))
144143rspcev 3309 . . . . . . . . . . 11 (({𝑍} ∈ (𝒫 𝑈 ∩ Fin) ∧ ((𝑆𝑘)𝐵𝑘) ⊆ {𝑍}) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆𝑘)𝐵𝑘) ⊆ 𝑣)
145141, 144sylan 488 . . . . . . . . . 10 ((𝜑 ∧ ((𝑆𝑘)𝐵𝑘) ⊆ {𝑍}) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆𝑘)𝐵𝑘) ⊆ 𝑣)
146134, 145syldan 487 . . . . . . . . 9 ((𝜑 ∧ ((𝑆𝑘)𝐵𝑘) ⊆ 𝑍) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆𝑘)𝐵𝑘) ⊆ 𝑣)
147 ovex 6678 . . . . . . . . . . 11 ((𝑆𝑘)𝐵𝑘) ∈ V
148 sseq1 3626 . . . . . . . . . . . . 13 (𝑢 = ((𝑆𝑘)𝐵𝑘) → (𝑢 𝑣 ↔ ((𝑆𝑘)𝐵𝑘) ⊆ 𝑣))
149148rexbidv 3052 . . . . . . . . . . . 12 (𝑢 = ((𝑆𝑘)𝐵𝑘) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆𝑘)𝐵𝑘) ⊆ 𝑣))
150149notbid 308 . . . . . . . . . . 11 (𝑢 = ((𝑆𝑘)𝐵𝑘) → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆𝑘)𝐵𝑘) ⊆ 𝑣))
151147, 150, 15elab2 3354 . . . . . . . . . 10 (((𝑆𝑘)𝐵𝑘) ∈ 𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆𝑘)𝐵𝑘) ⊆ 𝑣)
152151con2bii 347 . . . . . . . . 9 (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆𝑘)𝐵𝑘) ⊆ 𝑣 ↔ ¬ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾)
153146, 152sylib 208 . . . . . . . 8 ((𝜑 ∧ ((𝑆𝑘)𝐵𝑘) ⊆ 𝑍) → ¬ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾)
154153ex 450 . . . . . . 7 (𝜑 → (((𝑆𝑘)𝐵𝑘) ⊆ 𝑍 → ¬ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
155154ad2antrr 762 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → (((𝑆𝑘)𝐵𝑘) ⊆ 𝑍 → ¬ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
156130, 155syld 47 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ((𝑌(ball‘𝐷)𝑥) ⊆ 𝑍 → ¬ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
15736, 156mt2d 131 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧ (2nd ‘(𝑀𝑘)) < (𝑥 / 2))) → ¬ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍)
15827, 157rexlimddv 3035 . . 3 ((𝜑𝑥 ∈ ℝ+) → ¬ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍)
159158nrexdv 3001 . 2 (𝜑 → ¬ ∃𝑥 ∈ ℝ+ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍)
16011, 159pm2.21dd 186 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  ifcif 4086  𝒫 cpw 4158  {csn 4177  cop 4183   cuni 4436   ciun 4520   class class class wbr 4653  {copab 4712  cmpt 4729   × cxp 5112  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  Fincfn 7955  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  0cn0 11292  +crp 11832  seqcseq 12801  cexp 12860  ∞Metcxmt 19731  Metcme 19732  ballcbl 19733  MetOpencmopn 19736  Topctop 20698  clsccl 20822  𝑡clm 21030  CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fl 12593  df-seq 12802  df-exp 12861  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-lm 21033  df-cmet 23055
This theorem is referenced by:  heiborlem9  33618
  Copyright terms: Public domain W3C validator