Proof of Theorem heiborlem6
| Step | Hyp | Ref
| Expression |
| 1 | | nnnn0 11299 |
. . . 4
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
| 2 | | heibor.6 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| 3 | | cmetmet 23084 |
. . . . . . . 8
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| 4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 5 | | metxmet 22139 |
. . . . . . 7
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 7 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐷 ∈ (∞Met‘𝑋)) |
| 8 | | heibor.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
| 9 | | inss1 3833 |
. . . . . . . . 9
⊢
(𝒫 𝑋 ∩
Fin) ⊆ 𝒫 𝑋 |
| 10 | | fss 6056 |
. . . . . . . . 9
⊢ ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (𝒫
𝑋 ∩ Fin) ⊆
𝒫 𝑋) → 𝐹:ℕ0⟶𝒫 𝑋) |
| 11 | 8, 9, 10 | sylancl 694 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ0⟶𝒫 𝑋) |
| 12 | | peano2nn0 11333 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
| 13 | | ffvelrn 6357 |
. . . . . . . 8
⊢ ((𝐹:ℕ0⟶𝒫 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) →
(𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋) |
| 14 | 11, 12, 13 | syl2an 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋) |
| 15 | 14 | elpwid 4170 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ⊆ 𝑋) |
| 16 | | heibor.1 |
. . . . . . . . 9
⊢ 𝐽 = (MetOpen‘𝐷) |
| 17 | | heibor.3 |
. . . . . . . . 9
⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
| 18 | | heibor.4 |
. . . . . . . . 9
⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
| 19 | | heibor.5 |
. . . . . . . . 9
⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
| 20 | | heibor.8 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
| 21 | | heibor.9 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
| 22 | | heibor.10 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶𝐺0) |
| 23 | | heibor.11 |
. . . . . . . . 9
⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
| 24 | 16, 17, 18, 19, 2, 8, 20, 21, 22, 23 | heiborlem4 33613 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) →
(𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)) |
| 25 | 12, 24 | sylan2 491 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)) |
| 26 | | fvex 6201 |
. . . . . . . . 9
⊢ (𝑆‘(𝑘 + 1)) ∈ V |
| 27 | | ovex 6678 |
. . . . . . . . 9
⊢ (𝑘 + 1) ∈ V |
| 28 | 16, 17, 18, 26, 27 | heiborlem2 33611 |
. . . . . . . 8
⊢ ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧ (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)) ∧ ((𝑆‘(𝑘 + 1))𝐵(𝑘 + 1)) ∈ 𝐾)) |
| 29 | 28 | simp2bi 1077 |
. . . . . . 7
⊢ ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1))) |
| 30 | 25, 29 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1))) |
| 31 | 15, 30 | sseldd 3604 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ 𝑋) |
| 32 | 11 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝒫 𝑋) |
| 33 | 32 | elpwid 4170 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ⊆ 𝑋) |
| 34 | 16, 17, 18, 19, 2, 8, 20, 21, 22, 23 | heiborlem4 33613 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘)𝐺𝑘) |
| 35 | | fvex 6201 |
. . . . . . . . 9
⊢ (𝑆‘𝑘) ∈ V |
| 36 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑘 ∈ V |
| 37 | 16, 17, 18, 35, 36 | heiborlem2 33611 |
. . . . . . . 8
⊢ ((𝑆‘𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆‘𝑘) ∈ (𝐹‘𝑘) ∧ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) |
| 38 | 37 | simp2bi 1077 |
. . . . . . 7
⊢ ((𝑆‘𝑘)𝐺𝑘 → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
| 39 | 34, 38 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
| 40 | 33, 39 | sseldd 3604 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ 𝑋) |
| 41 | | 3re 11094 |
. . . . . 6
⊢ 3 ∈
ℝ |
| 42 | | 2nn 11185 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
| 43 | | nnexpcl 12873 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ (𝑘 +
1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ) |
| 44 | 42, 12, 43 | sylancr 695 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (2↑(𝑘 + 1))
∈ ℕ) |
| 45 | 44 | nnrpd 11870 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (2↑(𝑘 + 1))
∈ ℝ+) |
| 46 | 45 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(2↑(𝑘 + 1)) ∈
ℝ+) |
| 47 | | rerpdivcl 11861 |
. . . . . 6
⊢ ((3
∈ ℝ ∧ (2↑(𝑘 + 1)) ∈ ℝ+) → (3
/ (2↑(𝑘 + 1))) ∈
ℝ) |
| 48 | 41, 46, 47 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (3 /
(2↑(𝑘 + 1))) ∈
ℝ) |
| 49 | | nnexpcl 12873 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
| 50 | 42, 49 | mpan 706 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (2↑𝑘) ∈
ℕ) |
| 51 | 50 | nnrpd 11870 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (2↑𝑘) ∈
ℝ+) |
| 52 | 51 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(2↑𝑘) ∈
ℝ+) |
| 53 | | rerpdivcl 11861 |
. . . . . 6
⊢ ((3
∈ ℝ ∧ (2↑𝑘) ∈ ℝ+) → (3 /
(2↑𝑘)) ∈
ℝ) |
| 54 | 41, 52, 53 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (3 /
(2↑𝑘)) ∈
ℝ) |
| 55 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑆‘𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑚)))) |
| 56 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘)) |
| 57 | 56 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → (1 / (2↑𝑚)) = (1 / (2↑𝑘))) |
| 58 | 57 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘)))) |
| 59 | | ovex 6678 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∈ V |
| 60 | 55, 58, 19, 59 | ovmpt2 6796 |
. . . . . . . . . . 11
⊢ (((𝑆‘𝑘) ∈ 𝑋 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐵𝑘) = ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘)))) |
| 61 | 40, 60 | sylancom 701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐵𝑘) = ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘)))) |
| 62 | | df-br 4654 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆‘𝑘)𝐺𝑘 ↔ 〈(𝑆‘𝑘), 𝑘〉 ∈ 𝐺) |
| 63 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (𝑇‘𝑥) = (𝑇‘〈(𝑆‘𝑘), 𝑘〉)) |
| 64 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆‘𝑘)𝑇𝑘) = (𝑇‘〈(𝑆‘𝑘), 𝑘〉) |
| 65 | 63, 64 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (𝑇‘𝑥) = ((𝑆‘𝑘)𝑇𝑘)) |
| 66 | 35, 36 | op2ndd 7179 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (2nd ‘𝑥) = 𝑘) |
| 67 | 66 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → ((2nd ‘𝑥) + 1) = (𝑘 + 1)) |
| 68 | 65, 67 | breq12d 4666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ↔ ((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1))) |
| 69 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (𝐵‘𝑥) = (𝐵‘〈(𝑆‘𝑘), 𝑘〉)) |
| 70 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆‘𝑘)𝐵𝑘) = (𝐵‘〈(𝑆‘𝑘), 𝑘〉) |
| 71 | 69, 70 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (𝐵‘𝑥) = ((𝑆‘𝑘)𝐵𝑘)) |
| 72 | 65, 67 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1)) = (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) |
| 73 | 71, 72 | ineq12d 3815 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) = (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1)))) |
| 74 | 73 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾 ↔ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)) |
| 75 | 68, 74 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) ↔ (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))) |
| 76 | 75 | rspccv 3306 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) → (〈(𝑆‘𝑘), 𝑘〉 ∈ 𝐺 → (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))) |
| 77 | 21, 76 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (〈(𝑆‘𝑘), 𝑘〉 ∈ 𝐺 → (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))) |
| 78 | 62, 77 | syl5bi 232 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑆‘𝑘)𝐺𝑘 → (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))) |
| 79 | 78 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐺𝑘 → (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))) |
| 80 | 34, 79 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)) |
| 81 | 80 | simpld 475 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1)) |
| 82 | | ovex 6678 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆‘𝑘)𝑇𝑘) ∈ V |
| 83 | 16, 17, 18, 82, 27 | heiborlem2 33611 |
. . . . . . . . . . . . . 14
⊢ (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧
((𝑆‘𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)) ∧ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1)) ∈ 𝐾)) |
| 84 | 83 | simp2bi 1077 |
. . . . . . . . . . . . 13
⊢ (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) → ((𝑆‘𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1))) |
| 85 | 81, 84 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1))) |
| 86 | 15, 85 | sseldd 3604 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋) |
| 87 | 12 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈
ℕ0) |
| 88 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((𝑆‘𝑘)𝑇𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚)))) |
| 89 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 + 1) → (2↑𝑚) = (2↑(𝑘 + 1))) |
| 90 | 89 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑘 + 1) → (1 / (2↑𝑚)) = (1 / (2↑(𝑘 + 1)))) |
| 91 | 90 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑘 + 1) → (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) |
| 92 | | ovex 6678 |
. . . . . . . . . . . 12
⊢ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))) ∈ V |
| 93 | 88, 91, 19, 92 | ovmpt2 6796 |
. . . . . . . . . . 11
⊢ ((((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) →
(((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) |
| 94 | 86, 87, 93 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) |
| 95 | 61, 94 | ineq12d 3815 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) = (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))) |
| 96 | 80 | simprd 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾) |
| 97 | | 0elpw 4834 |
. . . . . . . . . . . . 13
⊢ ∅
∈ 𝒫 𝑈 |
| 98 | | 0fin 8188 |
. . . . . . . . . . . . 13
⊢ ∅
∈ Fin |
| 99 | | elin 3796 |
. . . . . . . . . . . . 13
⊢ (∅
∈ (𝒫 𝑈 ∩
Fin) ↔ (∅ ∈ 𝒫 𝑈 ∧ ∅ ∈ Fin)) |
| 100 | 97, 98, 99 | mpbir2an 955 |
. . . . . . . . . . . 12
⊢ ∅
∈ (𝒫 𝑈 ∩
Fin) |
| 101 | | 0ss 3972 |
. . . . . . . . . . . 12
⊢ ∅
⊆ ∪ ∅ |
| 102 | | unieq 4444 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = ∅ → ∪ 𝑣 =
∪ ∅) |
| 103 | 102 | sseq2d 3633 |
. . . . . . . . . . . . 13
⊢ (𝑣 = ∅ → (∅
⊆ ∪ 𝑣 ↔ ∅ ⊆ ∪ ∅)) |
| 104 | 103 | rspcev 3309 |
. . . . . . . . . . . 12
⊢ ((∅
∈ (𝒫 𝑈 ∩
Fin) ∧ ∅ ⊆ ∪ ∅) →
∃𝑣 ∈ (𝒫
𝑈 ∩ Fin)∅ ⊆
∪ 𝑣) |
| 105 | 100, 101,
104 | mp2an 708 |
. . . . . . . . . . 11
⊢
∃𝑣 ∈
(𝒫 𝑈 ∩
Fin)∅ ⊆ ∪ 𝑣 |
| 106 | | 0ex 4790 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
| 107 | | sseq1 3626 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = ∅ → (𝑢 ⊆ ∪ 𝑣
↔ ∅ ⊆ ∪ 𝑣)) |
| 108 | 107 | rexbidv 3052 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = ∅ → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ ∪ 𝑣)) |
| 109 | 108 | notbid 308 |
. . . . . . . . . . . . 13
⊢ (𝑢 = ∅ → (¬
∃𝑣 ∈ (𝒫
𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣
↔ ¬ ∃𝑣
∈ (𝒫 𝑈 ∩
Fin)∅ ⊆ ∪ 𝑣)) |
| 110 | 106, 109,
17 | elab2 3354 |
. . . . . . . . . . . 12
⊢ (∅
∈ 𝐾 ↔ ¬
∃𝑣 ∈ (𝒫
𝑈 ∩ Fin)∅ ⊆
∪ 𝑣) |
| 111 | 110 | con2bii 347 |
. . . . . . . . . . 11
⊢
(∃𝑣 ∈
(𝒫 𝑈 ∩
Fin)∅ ⊆ ∪ 𝑣 ↔ ¬ ∅ ∈ 𝐾) |
| 112 | 105, 111 | mpbi 220 |
. . . . . . . . . 10
⊢ ¬
∅ ∈ 𝐾 |
| 113 | | nelne2 2891 |
. . . . . . . . . 10
⊢
(((((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾 ∧ ¬ ∅ ∈ 𝐾) → (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅) |
| 114 | 96, 112, 113 | sylancl 694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅) |
| 115 | 95, 114 | eqnetrrd 2862 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅) |
| 116 | 51 | rpreccld 11882 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (1 / (2↑𝑘))
∈ ℝ+) |
| 117 | 116 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑𝑘)) ∈
ℝ+) |
| 118 | 117 | rpred 11872 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑𝑘)) ∈
ℝ) |
| 119 | 45 | rpreccld 11882 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (1 / (2↑(𝑘 +
1))) ∈ ℝ+) |
| 120 | 119 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑(𝑘 + 1))) ∈
ℝ+) |
| 121 | 120 | rpred 11872 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑(𝑘 + 1))) ∈
ℝ) |
| 122 | | rexadd 12063 |
. . . . . . . . . . . 12
⊢ (((1 /
(2↑𝑘)) ∈ ℝ
∧ (1 / (2↑(𝑘 +
1))) ∈ ℝ) → ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))) |
| 123 | 118, 121,
122 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((1 /
(2↑𝑘))
+𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))) |
| 124 | 123 | breq1d 4663 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((1 /
(2↑𝑘))
+𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ↔ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)))) |
| 125 | 117 | rpxrd 11873 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑𝑘)) ∈
ℝ*) |
| 126 | 120 | rpxrd 11873 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑(𝑘 + 1))) ∈
ℝ*) |
| 127 | | bldisj 22203 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘𝑘) ∈ 𝑋 ∧ ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 /
(2↑(𝑘 + 1))) ∈
ℝ* ∧ ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)))) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅) |
| 128 | 127 | 3exp2 1285 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘𝑘) ∈ 𝑋 ∧ ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋) → ((1 / (2↑𝑘)) ∈ ℝ* → ((1 /
(2↑(𝑘 + 1))) ∈
ℝ* → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)))) |
| 129 | 128 | imp32 449 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘𝑘) ∈ 𝑋 ∧ ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 /
(2↑(𝑘 + 1))) ∈
ℝ*)) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)) |
| 130 | 7, 40, 86, 125, 126, 129 | syl32anc 1334 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((1 /
(2↑𝑘))
+𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)) |
| 131 | 124, 130 | sylbird 250 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ≤
((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)) |
| 132 | 131 | necon3ad 2807 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅ → ¬ ((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ≤
((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)))) |
| 133 | 115, 132 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ¬ ((1
/ (2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ≤
((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘))) |
| 134 | 117, 120 | rpaddcld 11887 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ∈
ℝ+) |
| 135 | 134 | rpred 11872 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ∈
ℝ) |
| 136 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐷 ∈ (Met‘𝑋)) |
| 137 | | metcl 22137 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑆‘𝑘) ∈ 𝑋 ∧ ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋) → ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ∈ ℝ) |
| 138 | 136, 40, 86, 137 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ∈ ℝ) |
| 139 | 135, 138 | letrid 10189 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ≤
((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ∨ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))) |
| 140 | 139 | ord 392 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬
((1 / (2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ≤
((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) → ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))) |
| 141 | 133, 140 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))) |
| 142 | | seqp1 12816 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘0) → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))) |
| 143 | | nn0uz 11722 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
| 144 | 142, 143 | eleq2s 2719 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (seq0(𝑇, (𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))) |
| 145 | 23 | fveq1i 6192 |
. . . . . . . . . . 11
⊢ (𝑆‘(𝑘 + 1)) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) |
| 146 | 23 | fveq1i 6192 |
. . . . . . . . . . . 12
⊢ (𝑆‘𝑘) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘) |
| 147 | 146 | oveq1i 6660 |
. . . . . . . . . . 11
⊢ ((𝑆‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) |
| 148 | 144, 145,
147 | 3eqtr4g 2681 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑆‘(𝑘 + 1)) = ((𝑆‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))) |
| 149 | | nn0p1nn 11332 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ) |
| 150 | | nnne0 11053 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 + 1) ∈ ℕ →
(𝑘 + 1) ≠
0) |
| 151 | 150 | neneqd 2799 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 + 1) ∈ ℕ →
¬ (𝑘 + 1) =
0) |
| 152 | 149, 151 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
→ ¬ (𝑘 + 1) =
0) |
| 153 | 152 | iffalsed 4097 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ if((𝑘 + 1) = 0,
𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1)) |
| 154 | | ovex 6678 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 + 1) − 1) ∈
V |
| 155 | 153, 154 | syl6eqel 2709 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ if((𝑘 + 1) = 0,
𝐶, ((𝑘 + 1) − 1)) ∈ V) |
| 156 | | eqeq1 2626 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑘 + 1) → (𝑚 = 0 ↔ (𝑘 + 1) = 0)) |
| 157 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑘 + 1) → (𝑚 − 1) = ((𝑘 + 1) − 1)) |
| 158 | 156, 157 | ifbieq2d 4111 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 + 1) → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1))) |
| 159 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) |
| 160 | 158, 159 | fvmptg 6280 |
. . . . . . . . . . . . 13
⊢ (((𝑘 + 1) ∈ ℕ0
∧ if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V) → ((𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1))) |
| 161 | 12, 155, 160 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1))) |
| 162 | | nn0cn 11302 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 163 | | ax-1cn 9994 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
| 164 | | pncan 10287 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 + 1)
− 1) = 𝑘) |
| 165 | 162, 163,
164 | sylancl 694 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ ((𝑘 + 1) − 1)
= 𝑘) |
| 166 | 161, 153,
165 | 3eqtrd 2660 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = 𝑘) |
| 167 | 166 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((𝑆‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((𝑆‘𝑘)𝑇𝑘)) |
| 168 | 148, 167 | eqtrd 2656 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (𝑆‘(𝑘 + 1)) = ((𝑆‘𝑘)𝑇𝑘)) |
| 169 | 168 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) = ((𝑆‘𝑘)𝑇𝑘)) |
| 170 | 169 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆‘𝑘)) = (((𝑆‘𝑘)𝑇𝑘)𝐷(𝑆‘𝑘))) |
| 171 | | metsym 22155 |
. . . . . . . 8
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑆‘𝑘) ∈ 𝑋) → (((𝑆‘𝑘)𝑇𝑘)𝐷(𝑆‘𝑘)) = ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘))) |
| 172 | 136, 86, 40, 171 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝑇𝑘)𝐷(𝑆‘𝑘)) = ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘))) |
| 173 | 170, 172 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆‘𝑘)) = ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘))) |
| 174 | | 3cn 11095 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℂ |
| 175 | 174 | 2timesi 11147 |
. . . . . . . . . . . 12
⊢ (2
· 3) = (3 + 3) |
| 176 | 175 | oveq1i 6660 |
. . . . . . . . . . 11
⊢ ((2
· 3) − 3) = ((3 + 3) − 3) |
| 177 | 174, 174 | pncan3oi 10297 |
. . . . . . . . . . 11
⊢ ((3 + 3)
− 3) = 3 |
| 178 | | df-3 11080 |
. . . . . . . . . . 11
⊢ 3 = (2 +
1) |
| 179 | 176, 177,
178 | 3eqtri 2648 |
. . . . . . . . . 10
⊢ ((2
· 3) − 3) = (2 + 1) |
| 180 | 179 | oveq1i 6660 |
. . . . . . . . 9
⊢ (((2
· 3) − 3) / (2↑(𝑘 + 1))) = ((2 + 1) / (2↑(𝑘 + 1))) |
| 181 | | rpcn 11841 |
. . . . . . . . . . 11
⊢
((2↑(𝑘 + 1))
∈ ℝ+ → (2↑(𝑘 + 1)) ∈ ℂ) |
| 182 | | rpne0 11848 |
. . . . . . . . . . 11
⊢
((2↑(𝑘 + 1))
∈ ℝ+ → (2↑(𝑘 + 1)) ≠ 0) |
| 183 | | 2cn 11091 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℂ |
| 184 | 183, 174 | mulcli 10045 |
. . . . . . . . . . . 12
⊢ (2
· 3) ∈ ℂ |
| 185 | | divsubdir 10721 |
. . . . . . . . . . . 12
⊢ (((2
· 3) ∈ ℂ ∧ 3 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧
(2↑(𝑘 + 1)) ≠ 0))
→ (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 /
(2↑(𝑘 +
1))))) |
| 186 | 184, 174,
185 | mp3an12 1414 |
. . . . . . . . . . 11
⊢
(((2↑(𝑘 + 1))
∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → (((2 · 3)
− 3) / (2↑(𝑘 +
1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1))))) |
| 187 | 181, 182,
186 | syl2anc 693 |
. . . . . . . . . 10
⊢
((2↑(𝑘 + 1))
∈ ℝ+ → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) /
(2↑(𝑘 + 1))) −
(3 / (2↑(𝑘 +
1))))) |
| 188 | 45, 187 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 /
(2↑(𝑘 +
1))))) |
| 189 | | divdir 10710 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℂ ∧ 1 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0)) → ((2 + 1)
/ (2↑(𝑘 + 1))) = ((2 /
(2↑(𝑘 + 1))) + (1 /
(2↑(𝑘 +
1))))) |
| 190 | 183, 163,
189 | mp3an12 1414 |
. . . . . . . . . . 11
⊢
(((2↑(𝑘 + 1))
∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → ((2 + 1) /
(2↑(𝑘 + 1))) = ((2 /
(2↑(𝑘 + 1))) + (1 /
(2↑(𝑘 +
1))))) |
| 191 | 181, 182,
190 | syl2anc 693 |
. . . . . . . . . 10
⊢
((2↑(𝑘 + 1))
∈ ℝ+ → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1))))) |
| 192 | 45, 191 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1))))) |
| 193 | 180, 188,
192 | 3eqtr3a 2680 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1))))) |
| 194 | | rpcn 11841 |
. . . . . . . . . . . 12
⊢
((2↑𝑘) ∈
ℝ+ → (2↑𝑘) ∈ ℂ) |
| 195 | | rpne0 11848 |
. . . . . . . . . . . 12
⊢
((2↑𝑘) ∈
ℝ+ → (2↑𝑘) ≠ 0) |
| 196 | | 2cnne0 11242 |
. . . . . . . . . . . . 13
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 197 | | divcan5 10727 |
. . . . . . . . . . . . 13
⊢ ((3
∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈
ℂ ∧ 2 ≠ 0)) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘))) |
| 198 | 174, 196,
197 | mp3an13 1415 |
. . . . . . . . . . . 12
⊢
(((2↑𝑘) ∈
ℂ ∧ (2↑𝑘)
≠ 0) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘))) |
| 199 | 194, 195,
198 | syl2anc 693 |
. . . . . . . . . . 11
⊢
((2↑𝑘) ∈
ℝ+ → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘))) |
| 200 | 51, 199 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘))) |
| 201 | 51, 194 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ (2↑𝑘) ∈
ℂ) |
| 202 | | mulcom 10022 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ (2↑𝑘) ∈ ℂ) → (2 ·
(2↑𝑘)) =
((2↑𝑘) ·
2)) |
| 203 | 183, 201,
202 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (2 · (2↑𝑘)) = ((2↑𝑘) · 2)) |
| 204 | | expp1 12867 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ 𝑘
∈ ℕ0) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2)) |
| 205 | 183, 204 | mpan 706 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (2↑(𝑘 + 1)) =
((2↑𝑘) ·
2)) |
| 206 | 203, 205 | eqtr4d 2659 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (2 · (2↑𝑘)) = (2↑(𝑘 + 1))) |
| 207 | 206 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((2 · 3) / (2 · (2↑𝑘))) = ((2 · 3) / (2↑(𝑘 + 1)))) |
| 208 | 200, 207 | eqtr3d 2658 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (3 / (2↑𝑘)) =
((2 · 3) / (2↑(𝑘 + 1)))) |
| 209 | 208 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ ((3 / (2↑𝑘))
− (3 / (2↑(𝑘 +
1)))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1))))) |
| 210 | | divcan5 10727 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈
ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘))) |
| 211 | 163, 196,
210 | mp3an13 1415 |
. . . . . . . . . . . 12
⊢
(((2↑𝑘) ∈
ℂ ∧ (2↑𝑘)
≠ 0) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘))) |
| 212 | 194, 195,
211 | syl2anc 693 |
. . . . . . . . . . 11
⊢
((2↑𝑘) ∈
ℝ+ → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘))) |
| 213 | 51, 212 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘))) |
| 214 | | 2t1e2 11176 |
. . . . . . . . . . . 12
⊢ (2
· 1) = 2 |
| 215 | 214 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (2 · 1) = 2) |
| 216 | 215, 206 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((2 · 1) / (2 · (2↑𝑘))) = (2 / (2↑(𝑘 + 1)))) |
| 217 | 213, 216 | eqtr3d 2658 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (1 / (2↑𝑘)) =
(2 / (2↑(𝑘 +
1)))) |
| 218 | 217 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ ((1 / (2↑𝑘)) +
(1 / (2↑(𝑘 + 1)))) =
((2 / (2↑(𝑘 + 1))) +
(1 / (2↑(𝑘 +
1))))) |
| 219 | 193, 209,
218 | 3eqtr4d 2666 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ ((3 / (2↑𝑘))
− (3 / (2↑(𝑘 +
1)))) = ((1 / (2↑𝑘)) +
(1 / (2↑(𝑘 +
1))))) |
| 220 | 219 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((3 /
(2↑𝑘)) − (3 /
(2↑(𝑘 + 1)))) = ((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 +
1))))) |
| 221 | 141, 173,
220 | 3brtr4d 4685 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆‘𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1))))) |
| 222 | | blss2 22209 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘(𝑘 + 1)) ∈ 𝑋 ∧ (𝑆‘𝑘) ∈ 𝑋) ∧ ((3 / (2↑(𝑘 + 1))) ∈ ℝ ∧ (3 /
(2↑𝑘)) ∈ ℝ
∧ ((𝑆‘(𝑘 + 1))𝐷(𝑆‘𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))))) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘)))) |
| 223 | 7, 31, 40, 48, 54, 221, 222 | syl33anc 1341 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘)))) |
| 224 | 1, 223 | sylan2 491 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘)))) |
| 225 | | peano2nn 11032 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
| 226 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑛 = (𝑘 + 1) → (𝑆‘𝑛) = (𝑆‘(𝑘 + 1))) |
| 227 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑘 + 1) → (2↑𝑛) = (2↑(𝑘 + 1))) |
| 228 | 227 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑛 = (𝑘 + 1) → (3 / (2↑𝑛)) = (3 / (2↑(𝑘 + 1)))) |
| 229 | 226, 228 | opeq12d 4410 |
. . . . . . . 8
⊢ (𝑛 = (𝑘 + 1) → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 = 〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉) |
| 230 | | heibor.12 |
. . . . . . . 8
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
| 231 | | opex 4932 |
. . . . . . . 8
⊢
〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉 ∈ V |
| 232 | 229, 230,
231 | fvmpt 6282 |
. . . . . . 7
⊢ ((𝑘 + 1) ∈ ℕ →
(𝑀‘(𝑘 + 1)) = 〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉) |
| 233 | 225, 232 | syl 17 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝑀‘(𝑘 + 1)) = 〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉) |
| 234 | 233 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑀‘(𝑘 + 1)) = 〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉) |
| 235 | 234 | fveq2d 6195 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((ball‘𝐷)‘〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉)) |
| 236 | | df-ov 6653 |
. . . 4
⊢ ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) = ((ball‘𝐷)‘〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉) |
| 237 | 235, 236 | syl6eqr 2674 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1))))) |
| 238 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝑆‘𝑛) = (𝑆‘𝑘)) |
| 239 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘)) |
| 240 | 239 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘))) |
| 241 | 238, 240 | opeq12d 4410 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
| 242 | | opex 4932 |
. . . . . . 7
⊢
〈(𝑆‘𝑘), (3 / (2↑𝑘))〉 ∈
V |
| 243 | 241, 230,
242 | fvmpt 6282 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝑀‘𝑘) = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
| 244 | 243 | fveq2d 6195 |
. . . . 5
⊢ (𝑘 ∈ ℕ →
((ball‘𝐷)‘(𝑀‘𝑘)) = ((ball‘𝐷)‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉)) |
| 245 | | df-ov 6653 |
. . . . 5
⊢ ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘))) = ((ball‘𝐷)‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
| 246 | 244, 245 | syl6eqr 2674 |
. . . 4
⊢ (𝑘 ∈ ℕ →
((ball‘𝐷)‘(𝑀‘𝑘)) = ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘)))) |
| 247 | 246 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘𝑘)) = ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘)))) |
| 248 | 224, 237,
247 | 3sstr4d 3648 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) |
| 249 | 248 | ralrimiva 2966 |
1
⊢ (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) |