Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr3N Structured version   Visualization version   GIF version

Theorem cmtbr3N 34541
Description: Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 28467 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr2.b 𝐵 = (Base‘𝐾)
cmtbr2.j = (join‘𝐾)
cmtbr2.m = (meet‘𝐾)
cmtbr2.o = (oc‘𝐾)
cmtbr2.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtbr3N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))

Proof of Theorem cmtbr3N
StepHypRef Expression
1 cmtbr2.b . . . . 5 𝐵 = (Base‘𝐾)
2 cmtbr2.c . . . . 5 𝐶 = (cm‘𝐾)
31, 2cmtcomN 34536 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
4 cmtbr2.j . . . . . 6 = (join‘𝐾)
5 cmtbr2.m . . . . . 6 = (meet‘𝐾)
6 cmtbr2.o . . . . . 6 = (oc‘𝐾)
71, 4, 5, 6, 2cmtbr2N 34540 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))))
873com23 1271 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))))
93, 8bitrd 268 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))))
10 oveq2 6658 . . . . . 6 (𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋))) → (𝑋 𝑌) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
1110adantl 482 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))) → (𝑋 𝑌) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
12 omlol 34527 . . . . . . . . 9 (𝐾 ∈ OML → 𝐾 ∈ OL)
13123ad2ant1 1082 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
14 simp2 1062 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
15 omllat 34529 . . . . . . . . . 10 (𝐾 ∈ OML → 𝐾 ∈ Lat)
16153ad2ant1 1082 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
17 simp3 1063 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
181, 4latjcl 17051 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) ∈ 𝐵)
1916, 17, 14, 18syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋) ∈ 𝐵)
20 omlop 34528 . . . . . . . . . . 11 (𝐾 ∈ OML → 𝐾 ∈ OP)
21203ad2ant1 1082 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
221, 6opoccl 34481 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
2321, 14, 22syl2anc 693 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
241, 4latjcl 17051 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑋) ∈ 𝐵) → (𝑌 ( 𝑋)) ∈ 𝐵)
2516, 17, 23, 24syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 ( 𝑋)) ∈ 𝐵)
261, 5latmassOLD 34516 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ (𝑌 𝑋) ∈ 𝐵 ∧ (𝑌 ( 𝑋)) ∈ 𝐵)) → ((𝑋 (𝑌 𝑋)) (𝑌 ( 𝑋))) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
2713, 14, 19, 25, 26syl13anc 1328 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (𝑌 𝑋)) (𝑌 ( 𝑋))) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
281, 4latjcom 17059 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) = (𝑋 𝑌))
2916, 17, 14, 28syl3anc 1326 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋) = (𝑋 𝑌))
3029oveq2d 6666 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑌 𝑋)) = (𝑋 (𝑋 𝑌)))
311, 4, 5latabs2 17088 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
3215, 31syl3an1 1359 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
3330, 32eqtrd 2656 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑌 𝑋)) = 𝑋)
341, 4latjcom 17059 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑋) ∈ 𝐵) → (𝑌 ( 𝑋)) = (( 𝑋) 𝑌))
3516, 17, 23, 34syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 ( 𝑋)) = (( 𝑋) 𝑌))
3633, 35oveq12d 6668 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (𝑌 𝑋)) (𝑌 ( 𝑋))) = (𝑋 (( 𝑋) 𝑌)))
3727, 36eqtr3d 2658 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))) = (𝑋 (( 𝑋) 𝑌)))
3837adantr 481 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))) → (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))) = (𝑋 (( 𝑋) 𝑌)))
3911, 38eqtr2d 2657 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))) → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌))
4039ex 450 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋))) → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
419, 40sylbid 230 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
42 simp1 1061 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
431, 6opoccl 34481 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
4421, 17, 43syl2anc 693 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
451, 5latmcl 17052 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
4616, 14, 44, 45syl3anc 1326 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
4742, 46, 143jca 1242 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ OML ∧ (𝑋 ( 𝑌)) ∈ 𝐵𝑋𝐵))
48 eqid 2622 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
491, 48, 5latmle1 17076 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌))(le‘𝐾)𝑋)
5016, 14, 44, 49syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌))(le‘𝐾)𝑋)
511, 48, 4, 5, 6omllaw2N 34531 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋 ( 𝑌)) ∈ 𝐵𝑋𝐵) → ((𝑋 ( 𝑌))(le‘𝐾)𝑋 → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = 𝑋))
5247, 50, 51sylc 65 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = 𝑋)
531, 6opoccl 34481 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ (𝑋 ( 𝑌)) ∈ 𝐵) → ( ‘(𝑋 ( 𝑌))) ∈ 𝐵)
5421, 46, 53syl2anc 693 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) ∈ 𝐵)
551, 5latmcl 17052 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ( ‘(𝑋 ( 𝑌))) ∈ 𝐵𝑋𝐵) → (( ‘(𝑋 ( 𝑌))) 𝑋) ∈ 𝐵)
5616, 54, 14, 55syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( ‘(𝑋 ( 𝑌))) 𝑋) ∈ 𝐵)
571, 4latjcom 17059 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋 ( 𝑌)) ∈ 𝐵 ∧ (( ‘(𝑋 ( 𝑌))) 𝑋) ∈ 𝐵) → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
5816, 46, 56, 57syl3anc 1326 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
5952, 58eqtr3d 2658 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋 = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
6059adantr 481 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)) → 𝑋 = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
611, 4, 5, 6oldmm3N 34506 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))
6212, 61syl3an1 1359 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))
6362oveq2d 6666 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( ‘(𝑋 ( 𝑌)))) = (𝑋 (( 𝑋) 𝑌)))
641, 5latmcom 17075 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( ‘(𝑋 ( 𝑌))) ∈ 𝐵) → (𝑋 ( ‘(𝑋 ( 𝑌)))) = (( ‘(𝑋 ( 𝑌))) 𝑋))
6516, 14, 54, 64syl3anc 1326 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( ‘(𝑋 ( 𝑌)))) = (( ‘(𝑋 ( 𝑌))) 𝑋))
6663, 65eqtr3d 2658 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) = (( ‘(𝑋 ( 𝑌))) 𝑋))
6766eqeq1d 2624 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) ↔ (( ‘(𝑋 ( 𝑌))) 𝑋) = (𝑋 𝑌)))
68 oveq1 6657 . . . . . . 7 ((( ‘(𝑋 ( 𝑌))) 𝑋) = (𝑋 𝑌) → ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))) = ((𝑋 𝑌) (𝑋 ( 𝑌))))
6967, 68syl6bi 243 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))) = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
7069imp 445 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)) → ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))) = ((𝑋 𝑌) (𝑋 ( 𝑌))))
7160, 70eqtrd 2656 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)) → 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌))))
7271ex 450 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
731, 4, 5, 6, 2cmtvalN 34498 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
7472, 73sylibrd 249 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → 𝑋𝐶𝑌))
7541, 74impbid 202 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  occoc 15949  joincjn 16944  meetcmee 16945  Latclat 17045  OPcops 34459  cmccmtN 34460  OLcol 34461  OMLcoml 34462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-oposet 34463  df-cmtN 34464  df-ol 34465  df-oml 34466
This theorem is referenced by:  cmtbr4N  34542  omlfh1N  34545
  Copyright terms: Public domain W3C validator