MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfvval Structured version   Visualization version   GIF version

Theorem cnextfvval 21869
Description: The value of the continuous extension of a given function 𝐹 at a point 𝑋. (Contributed by Thierry Arnoux, 21-Dec-2017.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
Assertion
Ref Expression
cnextfvval ((𝜑𝑋𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝜑,𝑥

Proof of Theorem cnextfvval
StepHypRef Expression
1 cnextf.3 . . . 4 (𝜑𝐽 ∈ Top)
21adantr 481 . . 3 ((𝜑𝑋𝐶) → 𝐽 ∈ Top)
3 cnextf.4 . . . 4 (𝜑𝐾 ∈ Haus)
43adantr 481 . . 3 ((𝜑𝑋𝐶) → 𝐾 ∈ Haus)
5 cnextf.5 . . . 4 (𝜑𝐹:𝐴𝐵)
65adantr 481 . . 3 ((𝜑𝑋𝐶) → 𝐹:𝐴𝐵)
7 cnextf.a . . . 4 (𝜑𝐴𝐶)
87adantr 481 . . 3 ((𝜑𝑋𝐶) → 𝐴𝐶)
9 cnextf.1 . . . 4 𝐶 = 𝐽
10 cnextf.2 . . . 4 𝐵 = 𝐾
119, 10cnextfun 21868 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
122, 4, 6, 8, 11syl22anc 1327 . 2 ((𝜑𝑋𝐶) → Fun ((𝐽CnExt𝐾)‘𝐹))
13 cnextf.6 . . . . . 6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
1413eleq2d 2687 . . . . 5 (𝜑 → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑋𝐶))
1514biimpar 502 . . . 4 ((𝜑𝑋𝐶) → 𝑋 ∈ ((cls‘𝐽)‘𝐴))
16 fvex 6201 . . . . . . 7 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ V
1716uniex 6953 . . . . . 6 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ V
1817snid 4208 . . . . 5 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)}
19 sneq 4187 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2019fveq2d 6195 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋}))
2120oveq1d 6665 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
2221oveq2d 6666 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
2322fveq1d 6193 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2423breq1d 4663 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1𝑜 ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1𝑜))
2524imbi2d 330 . . . . . . . 8 (𝑥 = 𝑋 → ((𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1𝑜) ↔ (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1𝑜)))
263adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐾 ∈ Haus)
271adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝐽 ∈ Top)
289toptopon 20722 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
2927, 28sylib 208 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐽 ∈ (TopOn‘𝐶))
307adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐴𝐶)
31 simpr 477 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑥𝐶)
3213eleq2d 2687 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
3332biimpar 502 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
34 trnei 21696 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3534biimpa 501 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
3629, 30, 31, 33, 35syl31anc 1329 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
375adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐹:𝐴𝐵)
38 cnextf.7 . . . . . . . . . 10 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
3910hausflf2 21802 . . . . . . . . . 10 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1𝑜)
4026, 36, 37, 38, 39syl31anc 1329 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1𝑜)
4140expcom 451 . . . . . . . 8 (𝑥𝐶 → (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1𝑜))
4225, 41vtoclga 3272 . . . . . . 7 (𝑋𝐶 → (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1𝑜))
4342impcom 446 . . . . . 6 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1𝑜)
44 en1b 8024 . . . . . 6 (((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1𝑜 ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)})
4543, 44sylib 208 . . . . 5 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)})
4618, 45syl5eleqr 2708 . . . 4 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
47 nfiu1 4550 . . . . . . . 8 𝑥 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
4847nfel2 2781 . . . . . . 7 𝑥𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
49 nfv 1843 . . . . . . 7 𝑥(𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
5048, 49nfbi 1833 . . . . . 6 𝑥(⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
51 opeq1 4402 . . . . . . . 8 (𝑥 = 𝑋 → ⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ = ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩)
5251eleq1d 2686 . . . . . . 7 (𝑥 = 𝑋 → (⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
53 eleq1 2689 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑋 ∈ ((cls‘𝐽)‘𝐴)))
5423eleq2d 2687 . . . . . . . 8 (𝑥 = 𝑋 → ( ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
5553, 54anbi12d 747 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
5652, 55bibi12d 335 . . . . . 6 (𝑥 = 𝑋 → ((⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) ↔ (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))))
57 opeliunxp 5170 . . . . . 6 (⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
5850, 56, 57vtoclg1f 3265 . . . . 5 (𝑋𝐶 → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
5958adantl 482 . . . 4 ((𝜑𝑋𝐶) → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
6015, 46, 59mpbir2and 957 . . 3 ((𝜑𝑋𝐶) → ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
61 df-br 4654 . . . 4 (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
62 haustop 21135 . . . . . . . 8 (𝐾 ∈ Haus → 𝐾 ∈ Top)
633, 62syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
6463adantr 481 . . . . . 6 ((𝜑𝑋𝐶) → 𝐾 ∈ Top)
659, 10cnextfval 21866 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
662, 64, 6, 8, 65syl22anc 1327 . . . . 5 ((𝜑𝑋𝐶) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
6766eleq2d 2687 . . . 4 ((𝜑𝑋𝐶) → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
6861, 67syl5bb 272 . . 3 ((𝜑𝑋𝐶) → (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
6960, 68mpbird 247 . 2 ((𝜑𝑋𝐶) → 𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
70 funbrfv 6234 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
7112, 69, 70sylc 65 1 ((𝜑𝑋𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wss 3574  c0 3915  {csn 4177  cop 4183   cuni 4436   ciun 4520   class class class wbr 4653   × cxp 5112  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  cen 7952  t crest 16081  Topctop 20698  TopOnctopon 20715  clsccl 20822  neicnei 20901  Hauscha 21112  Filcfil 21649   fLimf cflf 21739  CnExtccnext 21863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-map 7859  df-pm 7860  df-en 7956  df-rest 16083  df-fbas 19743  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-haus 21119  df-fil 21650  df-flim 21743  df-flf 21744  df-cnext 21864
This theorem is referenced by:  cnextcn  21871  cnextfres1  21872
  Copyright terms: Public domain W3C validator