Proof of Theorem cnextfvval
| Step | Hyp | Ref
| Expression |
| 1 | | cnextf.3 |
. . . 4
   |
| 2 | 1 | adantr 481 |
. . 3
 
   |
| 3 | | cnextf.4 |
. . . 4
   |
| 4 | 3 | adantr 481 |
. . 3
 
   |
| 5 | | cnextf.5 |
. . . 4
       |
| 6 | 5 | adantr 481 |
. . 3
 
       |
| 7 | | cnextf.a |
. . . 4

  |
| 8 | 7 | adantr 481 |
. . 3
 
   |
| 9 | | cnextf.1 |
. . . 4
  |
| 10 | | cnextf.2 |
. . . 4
  |
| 11 | 9, 10 | cnextfun 21868 |
. . 3
             CnExt      |
| 12 | 2, 4, 6, 8, 11 | syl22anc 1327 |
. 2
 
   CnExt      |
| 13 | | cnextf.6 |
. . . . . 6
           |
| 14 | 13 | eleq2d 2687 |
. . . . 5
             |
| 15 | 14 | biimpar 502 |
. . . 4
 
           |
| 16 | | fvex 6201 |
. . . . . . 7
 
          
↾t       |
| 17 | 16 | uniex 6953 |
. . . . . 6
             
↾t       |
| 18 | 17 | snid 4208 |
. . . . 5
             
↾t                    
↾t        |
| 19 | | sneq 4187 |
. . . . . . . . . . . . . 14
  
    |
| 20 | 19 | fveq2d 6195 |
. . . . . . . . . . . . 13
                       |
| 21 | 20 | oveq1d 6665 |
. . . . . . . . . . . 12
           
↾t            
↾t    |
| 22 | 21 | oveq2d 6666 |
. . . . . . . . . . 11
             ↾t              
↾t     |
| 23 | 22 | fveq1d 6193 |
. . . . . . . . . 10
             
↾t                  
↾t        |
| 24 | 23 | breq1d 4663 |
. . . . . . . . 9
              
↾t                  
↾t         |
| 25 | 24 | imbi2d 330 |
. . . . . . . 8
  
 
          
↾t                    
↾t          |
| 26 | 3 | adantr 481 |
. . . . . . . . . 10
 
   |
| 27 | 1 | adantr 481 |
. . . . . . . . . . . 12
 
   |
| 28 | 9 | toptopon 20722 |
. . . . . . . . . . . 12

TopOn    |
| 29 | 27, 28 | sylib 208 |
. . . . . . . . . . 11
 
 TopOn    |
| 30 | 7 | adantr 481 |
. . . . . . . . . . 11
 
   |
| 31 | | simpr 477 |
. . . . . . . . . . 11
 
   |
| 32 | 13 | eleq2d 2687 |
. . . . . . . . . . . 12
             |
| 33 | 32 | biimpar 502 |
. . . . . . . . . . 11
 
           |
| 34 | | trnei 21696 |
. . . . . . . . . . . 12
  TopOn           
          
↾t         |
| 35 | 34 | biimpa 501 |
. . . . . . . . . . 11
   TopOn           
          
↾t        |
| 36 | 29, 30, 31, 33, 35 | syl31anc 1329 |
. . . . . . . . . 10
 
           
↾t        |
| 37 | 5 | adantr 481 |
. . . . . . . . . 10
 
       |
| 38 | | cnextf.7 |
. . . . . . . . . 10
 
             
↾t        |
| 39 | 10 | hausflf2 21802 |
. . . . . . . . . 10
              ↾t     
                 
↾t                   
↾t        |
| 40 | 26, 36, 37, 38, 39 | syl31anc 1329 |
. . . . . . . . 9
 
             
↾t        |
| 41 | 40 | expcom 451 |
. . . . . . . 8
               ↾t         |
| 42 | 25, 41 | vtoclga 3272 |
. . . . . . 7
              
↾t         |
| 43 | 42 | impcom 446 |
. . . . . 6
 
             
↾t        |
| 44 | | en1b 8024 |
. . . . . 6
             
↾t                  
↾t                    
↾t         |
| 45 | 43, 44 | sylib 208 |
. . . . 5
 
             
↾t                    
↾t         |
| 46 | 18, 45 | syl5eleqr 2708 |
. . . 4
 
              
↾t                  
↾t        |
| 47 | | nfiu1 4550 |
. . . . . . . 8
  
                        
↾t        |
| 48 | 47 | nfel2 2781 |
. . . . . . 7
                 
↾t       
                        
↾t        |
| 49 | | nfv 1843 |
. . . . . . 7
                        
↾t                  
↾t        |
| 50 | 48, 49 | nfbi 1833 |
. . . . . 6
                  
↾t       
                        
↾t      
                      
↾t                  
↾t         |
| 51 | | opeq1 4402 |
. . . . . . . 8
                
↾t           
          
↾t         |
| 52 | 51 | eleq1d 2686 |
. . . . . . 7
                 
↾t       
                        
↾t      
               
↾t       
                        
↾t          |
| 53 | | eleq1 2689 |
. . . . . . . 8
         
           |
| 54 | 23 | eleq2d 2687 |
. . . . . . . 8
               
↾t                  
↾t     
             
↾t                  
↾t         |
| 55 | 53, 54 | anbi12d 747 |
. . . . . . 7
                        
↾t                  
↾t      
                      
↾t                  
↾t          |
| 56 | 52, 55 | bibi12d 335 |
. . . . . 6
                  
↾t       
                        
↾t      
                      
↾t                  
↾t                        
↾t       
                        
↾t      
                      
↾t                  
↾t           |
| 57 | | opeliunxp 5170 |
. . . . . 6
                
↾t       
                        
↾t      
                      
↾t                  
↾t         |
| 58 | 50, 56, 57 | vtoclg1f 3265 |
. . . . 5
                 
↾t       
                        
↾t      
                      
↾t                  
↾t          |
| 59 | 58 | adantl 482 |
. . . 4
 
                 
↾t       
                        
↾t      
                      
↾t                  
↾t          |
| 60 | 15, 46, 59 | mpbir2and 957 |
. . 3
 
                
↾t       
                        
↾t         |
| 61 | | df-br 4654 |
. . . 4
    CnExt                  
↾t     
               
↾t         CnExt      |
| 62 | | haustop 21135 |
. . . . . . . 8

  |
| 63 | 3, 62 | syl 17 |
. . . . . . 7
   |
| 64 | 63 | adantr 481 |
. . . . . 6
 
   |
| 65 | 9, 10 | cnextfval 21866 |
. . . . . 6
             CnExt                             
↾t         |
| 66 | 2, 64, 6, 8, 65 | syl22anc 1327 |
. . . . 5
 
   CnExt                             
↾t         |
| 67 | 66 | eleq2d 2687 |
. . . 4
 
                 
↾t         CnExt   
               
↾t       
                        
↾t          |
| 68 | 61, 67 | syl5bb 272 |
. . 3
 
     CnExt       
          
↾t     
               
↾t       
                        
↾t          |
| 69 | 60, 68 | mpbird 247 |
. 2
 
    CnExt                  
↾t        |
| 70 | | funbrfv 6234 |
. 2
   CnExt        CnExt                  
↾t         CnExt                    
↾t         |
| 71 | 12, 69, 70 | sylc 65 |
1
 
    CnExt                    
↾t        |