MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1b Structured version   Visualization version   GIF version

Theorem en1b 8024
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
en1b (𝐴 ≈ 1𝑜𝐴 = { 𝐴})

Proof of Theorem en1b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 8023 . . 3 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4444 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 3203 . . . . . . . 8 𝑥 ∈ V
54unisn 4451 . . . . . . 7 {𝑥} = 𝑥
63, 5syl6eq 2672 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 4189 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2659 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1858 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 207 . 2 (𝐴 ≈ 1𝑜𝐴 = { 𝐴})
11 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
12 snex 4908 . . . . . 6 { 𝐴} ∈ V
1311, 12syl6eqel 2709 . . . . 5 (𝐴 = { 𝐴} → 𝐴 ∈ V)
14 uniexg 6955 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
1513, 14syl 17 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
16 ensn1g 8021 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1𝑜)
1715, 16syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1𝑜)
1811, 17eqbrtrd 4675 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1𝑜)
1910, 18impbii 199 1 (𝐴 ≈ 1𝑜𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  {csn 4177   cuni 4436   class class class wbr 4653  1𝑜c1o 7553  cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-en 7956
This theorem is referenced by:  en1uniel  8028  sylow2alem2  18033  sylow2a  18034  frgpcyg  19922  ptcmplem3  21858  cnextfvval  21869  cnextcn  21871  minveclem4a  23201  isppw  24840  xrge0tsmsbi  29786
  Copyright terms: Public domain W3C validator