Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnresima Structured version   Visualization version   GIF version

Theorem cnresima 33563
Description: A continuous function is continuous onto its image. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
cnresima ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))

Proof of Theorem cnresima
StepHypRef Expression
1 simp3 1063 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 simp2 1062 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 eqid 2622 . . . . 5 𝐾 = 𝐾
43toptopon 20722 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
52, 4sylib 208 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐾))
6 ssid 3624 . . . 4 ran 𝐹 ⊆ ran 𝐹
76a1i 11 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ran 𝐹)
8 eqid 2622 . . . . . 6 𝐽 = 𝐽
98, 3cnf 21050 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
10 frn 6053 . . . . 5 (𝐹: 𝐽 𝐾 → ran 𝐹 𝐾)
119, 10syl 17 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → ran 𝐹 𝐾)
12113ad2ant3 1084 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 𝐾)
13 cnrest2 21090 . . 3 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
145, 7, 12, 13syl3anc 1326 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
151, 14mpbid 222 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037  wcel 1990  wss 3574   cuni 4436  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698  TopOnctopon 20715   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator