| Step | Hyp | Ref
| Expression |
| 1 | | pi1xfr.p |
. . . 4
⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) |
| 2 | | pi1xfr.q |
. . . 4
⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) |
| 3 | | pi1xfr.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
| 4 | | pi1xfr.g |
. . . 4
⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) |
| 5 | | pi1xfr.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | | pi1xfr.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| 7 | | pi1xfr.i |
. . . 4
⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
| 8 | | pi1xfrcnv.h |
. . . 4
⊢ 𝐻 = ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | pi1xfrcnvlem 22856 |
. . 3
⊢ (𝜑 → ◡𝐺 ⊆ 𝐻) |
| 10 | | fvex 6201 |
. . . . . . . 8
⊢ (
≃ph‘𝐽) ∈ V |
| 11 | | ecexg 7746 |
. . . . . . . 8
⊢ ((
≃ph‘𝐽) ∈ V → [ℎ]( ≃ph‘𝐽) ∈ V) |
| 12 | 10, 11 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ ∪
(Base‘𝑄)) →
[ℎ](
≃ph‘𝐽) ∈ V) |
| 13 | | ecexg 7746 |
. . . . . . . 8
⊢ ((
≃ph‘𝐽) ∈ V → [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽) ∈ V) |
| 14 | 10, 13 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ ∪
(Base‘𝑄)) →
[(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽) ∈ V) |
| 15 | 8, 12, 14 | fliftrel 6558 |
. . . . . 6
⊢ (𝜑 → 𝐻 ⊆ (V × V)) |
| 16 | | df-rel 5121 |
. . . . . 6
⊢ (Rel
𝐻 ↔ 𝐻 ⊆ (V × V)) |
| 17 | 15, 16 | sylibr 224 |
. . . . 5
⊢ (𝜑 → Rel 𝐻) |
| 18 | | dfrel2 5583 |
. . . . 5
⊢ (Rel
𝐻 ↔ ◡◡𝐻 = 𝐻) |
| 19 | 17, 18 | sylib 208 |
. . . 4
⊢ (𝜑 → ◡◡𝐻 = 𝐻) |
| 20 | | 0elunit 12290 |
. . . . . . . . . 10
⊢ 0 ∈
(0[,]1) |
| 21 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (1 − 𝑥) = (1 −
0)) |
| 22 | | 1m0e1 11131 |
. . . . . . . . . . . . 13
⊢ (1
− 0) = 1 |
| 23 | 21, 22 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (1 − 𝑥) = 1) |
| 24 | 23 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝐹‘(1 − 𝑥)) = (𝐹‘1)) |
| 25 | | fvex 6201 |
. . . . . . . . . . 11
⊢ (𝐹‘1) ∈
V |
| 26 | 24, 7, 25 | fvmpt 6282 |
. . . . . . . . . 10
⊢ (0 ∈
(0[,]1) → (𝐼‘0)
= (𝐹‘1)) |
| 27 | 20, 26 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐼‘0) = (𝐹‘1) |
| 28 | 27 | oveq2i 6661 |
. . . . . . . 8
⊢ (𝐽 π1 (𝐼‘0)) = (𝐽 π1 (𝐹‘1)) |
| 29 | 2, 28 | eqtr4i 2647 |
. . . . . . 7
⊢ 𝑄 = (𝐽 π1 (𝐼‘0)) |
| 30 | | 1elunit 12291 |
. . . . . . . . . 10
⊢ 1 ∈
(0[,]1) |
| 31 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (1 − 𝑥) = (1 −
1)) |
| 32 | 31 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − 1))) |
| 33 | | 1m1e0 11089 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
| 34 | 33 | fveq2i 6194 |
. . . . . . . . . . . 12
⊢ (𝐹‘(1 − 1)) = (𝐹‘0) |
| 35 | 32, 34 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘0)) |
| 36 | | fvex 6201 |
. . . . . . . . . . 11
⊢ (𝐹‘0) ∈
V |
| 37 | 35, 7, 36 | fvmpt 6282 |
. . . . . . . . . 10
⊢ (1 ∈
(0[,]1) → (𝐼‘1)
= (𝐹‘0)) |
| 38 | 30, 37 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐼‘1) = (𝐹‘0) |
| 39 | 38 | oveq2i 6661 |
. . . . . . . 8
⊢ (𝐽 π1 (𝐼‘1)) = (𝐽 π1 (𝐹‘0)) |
| 40 | 1, 39 | eqtr4i 2647 |
. . . . . . 7
⊢ 𝑃 = (𝐽 π1 (𝐼‘1)) |
| 41 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 42 | | eqid 2622 |
. . . . . . 7
⊢ ran
(ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) = ran (ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) |
| 43 | 7 | pcorevcl 22825 |
. . . . . . . . 9
⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
| 44 | 6, 43 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
| 45 | 44 | simp1d 1073 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
| 46 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦)) |
| 47 | 46 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝐼‘(1 − 𝑧)) = (𝐼‘(1 − 𝑦))) |
| 48 | 47 | cbvmptv 4750 |
. . . . . . 7
⊢ (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑦 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑦))) |
| 49 | | eqid 2622 |
. . . . . . 7
⊢ ran
(𝑔 ∈ ∪ (Base‘𝑃) ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉) = ran (𝑔 ∈ ∪
(Base‘𝑃) ↦
〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉) |
| 50 | 29, 40, 41, 42, 5, 45, 48, 49 | pi1xfrcnvlem 22856 |
. . . . . 6
⊢ (𝜑 → ◡ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ⊆ ran (𝑔 ∈ ∪ (Base‘𝑃) ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉)) |
| 51 | | iitopon 22682 |
. . . . . . . . . . . . . . . . 17
⊢ II ∈
(TopOn‘(0[,]1)) |
| 52 | 51 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → II ∈
(TopOn‘(0[,]1))) |
| 53 | | cnf2 21053 |
. . . . . . . . . . . . . . . 16
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋) |
| 54 | 52, 5, 6, 53 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:(0[,]1)⟶𝑋) |
| 55 | 54 | feqmptd 6249 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐹‘𝑧))) |
| 56 | | iirev 22728 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (0[,]1) → (1
− 𝑧) ∈
(0[,]1)) |
| 57 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (1 − 𝑧) → (1 − 𝑥) = (1 − (1 − 𝑧))) |
| 58 | 57 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (1 − 𝑧) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑧)))) |
| 59 | | fvex 6201 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘(1 − (1 −
𝑧))) ∈
V |
| 60 | 58, 7, 59 | fvmpt 6282 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
− 𝑧) ∈ (0[,]1)
→ (𝐼‘(1 −
𝑧)) = (𝐹‘(1 − (1 − 𝑧)))) |
| 61 | 56, 60 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘(1 − (1 − 𝑧)))) |
| 62 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℂ |
| 63 | | unitssre 12319 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0[,]1)
⊆ ℝ |
| 64 | 63 | sseli 3599 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ (0[,]1) → 𝑧 ∈
ℝ) |
| 65 | 64 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ (0[,]1) → 𝑧 ∈
ℂ) |
| 66 | | nncan 10310 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℂ ∧ 𝑧
∈ ℂ) → (1 − (1 − 𝑧)) = 𝑧) |
| 67 | 62, 65, 66 | sylancr 695 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (0[,]1) → (1
− (1 − 𝑧)) =
𝑧) |
| 68 | 67 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (0[,]1) → (𝐹‘(1 − (1 −
𝑧))) = (𝐹‘𝑧)) |
| 69 | 61, 68 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘𝑧)) |
| 70 | 69 | mpteq2ia 4740 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑧 ∈ (0[,]1) ↦ (𝐹‘𝑧)) |
| 71 | 55, 70 | syl6eqr 2674 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))) |
| 72 | 71 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼)) = ((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))) |
| 73 | 72 | eceq1d 7783 |
. . . . . . . . . . 11
⊢ (𝜑 → [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽) = [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)) |
| 74 | 73 | opeq2d 4409 |
. . . . . . . . . 10
⊢ (𝜑 → 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉 = 〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) |
| 75 | 74 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝜑 → (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) = (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
| 76 | 75 | rneqd 5353 |
. . . . . . . 8
⊢ (𝜑 → ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) = ran (ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
| 77 | 8, 76 | syl5eq 2668 |
. . . . . . 7
⊢ (𝜑 → 𝐻 = ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
| 78 | 77 | cnveqd 5298 |
. . . . . 6
⊢ (𝜑 → ◡𝐻 = ◡ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
| 79 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| 80 | 79 | unieqd 4446 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝐵 =
∪ (Base‘𝑃)) |
| 81 | 71 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑔(*𝑝‘𝐽)𝐹) = (𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))))) |
| 82 | 81 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) = (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))) |
| 83 | 82 | eceq1d 7783 |
. . . . . . . . . 10
⊢ (𝜑 → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) = [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)) |
| 84 | 83 | opeq2d 4409 |
. . . . . . . . 9
⊢ (𝜑 → 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉 = 〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉) |
| 85 | 80, 84 | mpteq12dv 4733 |
. . . . . . . 8
⊢ (𝜑 → (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) = (𝑔 ∈ ∪
(Base‘𝑃) ↦
〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉)) |
| 86 | 85 | rneqd 5353 |
. . . . . . 7
⊢ (𝜑 → ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) = ran (𝑔 ∈ ∪ (Base‘𝑃) ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉)) |
| 87 | 4, 86 | syl5eq 2668 |
. . . . . 6
⊢ (𝜑 → 𝐺 = ran (𝑔 ∈ ∪
(Base‘𝑃) ↦
〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉)) |
| 88 | 50, 78, 87 | 3sstr4d 3648 |
. . . . 5
⊢ (𝜑 → ◡𝐻 ⊆ 𝐺) |
| 89 | | cnvss 5294 |
. . . . 5
⊢ (◡𝐻 ⊆ 𝐺 → ◡◡𝐻 ⊆ ◡𝐺) |
| 90 | 88, 89 | syl 17 |
. . . 4
⊢ (𝜑 → ◡◡𝐻 ⊆ ◡𝐺) |
| 91 | 19, 90 | eqsstr3d 3640 |
. . 3
⊢ (𝜑 → 𝐻 ⊆ ◡𝐺) |
| 92 | 9, 91 | eqssd 3620 |
. 2
⊢ (𝜑 → ◡𝐺 = 𝐻) |
| 93 | 92, 77 | eqtrd 2656 |
. . 3
⊢ (𝜑 → ◡𝐺 = ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
| 94 | 29, 40, 41, 42, 5, 45, 48 | pi1xfr 22855 |
. . 3
⊢ (𝜑 → ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ∈ (𝑄 GrpHom 𝑃)) |
| 95 | 93, 94 | eqeltrd 2701 |
. 2
⊢ (𝜑 → ◡𝐺 ∈ (𝑄 GrpHom 𝑃)) |
| 96 | 92, 95 | jca 554 |
1
⊢ (𝜑 → (◡𝐺 = 𝐻 ∧ ◡𝐺 ∈ (𝑄 GrpHom 𝑃))) |