MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjnmzb Structured version   Visualization version   GIF version

Theorem conjnmzb 17695
Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
conjnmz.1 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
Assertion
Ref Expression
conjnmzb (𝑆 ∈ (SubGrp‘𝐺) → (𝐴𝑁 ↔ (𝐴𝑋𝑆 = ran 𝐹)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧, + ,𝑦   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑁   𝑥,𝐺,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥)   (𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem conjnmzb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 conjnmz.1 . . . . 5 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
2 ssrab2 3687 . . . . 5 {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⊆ 𝑋
31, 2eqsstri 3635 . . . 4 𝑁𝑋
4 simpr 477 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐴𝑁)
53, 4sseldi 3601 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐴𝑋)
6 conjghm.x . . . 4 𝑋 = (Base‘𝐺)
7 conjghm.p . . . 4 + = (+g𝐺)
8 conjghm.m . . . 4 = (-g𝐺)
9 conjsubg.f . . . 4 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
106, 7, 8, 9, 1conjnmz 17694 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
115, 10jca 554 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → (𝐴𝑋𝑆 = ran 𝐹))
12 simprl 794 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → 𝐴𝑋)
13 simplrr 801 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → 𝑆 = ran 𝐹)
1413eleq2d 2687 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝐴 + 𝑤) ∈ ran 𝐹))
15 subgrcl 17599 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1615ad3antrrr 766 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
17 simpllr 799 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝐴𝑋)
186subgss 17595 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1918ad2antrr 762 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) → 𝑆𝑋)
2019sselda 3603 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝑥𝑋)
216, 7, 8grpaddsubass 17505 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑥𝑋𝐴𝑋)) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
2216, 17, 20, 17, 21syl13anc 1328 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
2322eqeq1d 2624 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤) ↔ (𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤)))
246, 8grpsubcl 17495 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥 𝐴) ∈ 𝑋)
2516, 20, 17, 24syl3anc 1326 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (𝑥 𝐴) ∈ 𝑋)
26 simplr 792 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → 𝑤𝑋)
276, 7grplcan 17477 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ ((𝑥 𝐴) ∈ 𝑋𝑤𝑋𝐴𝑋)) → ((𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤) ↔ (𝑥 𝐴) = 𝑤))
2816, 25, 26, 17, 27syl13anc 1328 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + (𝑥 𝐴)) = (𝐴 + 𝑤) ↔ (𝑥 𝐴) = 𝑤))
296, 7, 8grpsubadd 17503 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝐴𝑋𝑤𝑋)) → ((𝑥 𝐴) = 𝑤 ↔ (𝑤 + 𝐴) = 𝑥))
3016, 20, 17, 26, 29syl13anc 1328 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝑥 𝐴) = 𝑤 ↔ (𝑤 + 𝐴) = 𝑥))
3123, 28, 303bitrd 294 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → (((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤) ↔ (𝑤 + 𝐴) = 𝑥))
32 eqcom 2629 . . . . . . . . 9 ((𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ((𝐴 + 𝑥) 𝐴) = (𝐴 + 𝑤))
33 eqcom 2629 . . . . . . . . 9 (𝑥 = (𝑤 + 𝐴) ↔ (𝑤 + 𝐴) = 𝑥)
3431, 32, 333bitr4g 303 . . . . . . . 8 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) ∧ 𝑥𝑆) → ((𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ 𝑥 = (𝑤 + 𝐴)))
3534rexbidva 3049 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) ∧ 𝑤𝑋) → (∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴)))
3635adantlrr 757 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → (∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴)))
37 ovex 6678 . . . . . . 7 (𝐴 + 𝑤) ∈ V
38 eqeq1 2626 . . . . . . . 8 (𝑦 = (𝐴 + 𝑤) → (𝑦 = ((𝐴 + 𝑥) 𝐴) ↔ (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴)))
3938rexbidv 3052 . . . . . . 7 (𝑦 = (𝐴 + 𝑤) → (∃𝑥𝑆 𝑦 = ((𝐴 + 𝑥) 𝐴) ↔ ∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴)))
409rnmpt 5371 . . . . . . 7 ran 𝐹 = {𝑦 ∣ ∃𝑥𝑆 𝑦 = ((𝐴 + 𝑥) 𝐴)}
4137, 39, 40elab2 3354 . . . . . 6 ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ ∃𝑥𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) 𝐴))
42 risset 3062 . . . . . 6 ((𝑤 + 𝐴) ∈ 𝑆 ↔ ∃𝑥𝑆 𝑥 = (𝑤 + 𝐴))
4336, 41, 423bitr4g 303 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ (𝑤 + 𝐴) ∈ 𝑆))
4414, 43bitrd 268 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) ∧ 𝑤𝑋) → ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆))
4544ralrimiva 2966 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → ∀𝑤𝑋 ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆))
461elnmz 17633 . . 3 (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑤𝑋 ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆)))
4712, 45, 46sylanbrc 698 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴𝑋𝑆 = ran 𝐹)) → 𝐴𝑁)
4811, 47impbida 877 1 (𝑆 ∈ (SubGrp‘𝐺) → (𝐴𝑁 ↔ (𝐴𝑋𝑆 = ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574  cmpt 4729  ran crn 5115  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Grpcgrp 17422  -gcsg 17424  SubGrpcsubg 17588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591
This theorem is referenced by:  sylow3lem6  18047
  Copyright terms: Public domain W3C validator