Step | Hyp | Ref
| Expression |
1 | | conjnmz.1 |
. . . . 5
⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} |
2 | | ssrab2 3687 |
. . . . 5
⊢ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⊆ 𝑋 |
3 | 1, 2 | eqsstri 3635 |
. . . 4
⊢ 𝑁 ⊆ 𝑋 |
4 | | simpr 477 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝐴 ∈ 𝑁) |
5 | 3, 4 | sseldi 3601 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝐴 ∈ 𝑋) |
6 | | conjghm.x |
. . . 4
⊢ 𝑋 = (Base‘𝐺) |
7 | | conjghm.p |
. . . 4
⊢ + =
(+g‘𝐺) |
8 | | conjghm.m |
. . . 4
⊢ − =
(-g‘𝐺) |
9 | | conjsubg.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
10 | 6, 7, 8, 9, 1 | conjnmz 17694 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) |
11 | 5, 10 | jca 554 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹)) |
12 | | simprl 794 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹)) → 𝐴 ∈ 𝑋) |
13 | | simplrr 801 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹)) ∧ 𝑤 ∈ 𝑋) → 𝑆 = ran 𝐹) |
14 | 13 | eleq2d 2687 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹)) ∧ 𝑤 ∈ 𝑋) → ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝐴 + 𝑤) ∈ ran 𝐹)) |
15 | | subgrcl 17599 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
16 | 15 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ Grp) |
17 | | simpllr 799 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
18 | 6 | subgss 17595 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
19 | 18 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
20 | 19 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
21 | 6, 7, 8 | grpaddsubass 17505 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
22 | 16, 17, 20, 17, 21 | syl13anc 1328 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
23 | 22 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → (((𝐴 + 𝑥) − 𝐴) = (𝐴 + 𝑤) ↔ (𝐴 + (𝑥 − 𝐴)) = (𝐴 + 𝑤))) |
24 | 6, 8 | grpsubcl 17495 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥 − 𝐴) ∈ 𝑋) |
25 | 16, 20, 17, 24 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → (𝑥 − 𝐴) ∈ 𝑋) |
26 | | simplr 792 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → 𝑤 ∈ 𝑋) |
27 | 6, 7 | grplcan 17477 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ ((𝑥 − 𝐴) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + (𝑥 − 𝐴)) = (𝐴 + 𝑤) ↔ (𝑥 − 𝐴) = 𝑤)) |
28 | 16, 25, 26, 17, 27 | syl13anc 1328 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + (𝑥 − 𝐴)) = (𝐴 + 𝑤) ↔ (𝑥 − 𝐴) = 𝑤)) |
29 | 6, 7, 8 | grpsubadd 17503 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑥 − 𝐴) = 𝑤 ↔ (𝑤 + 𝐴) = 𝑥)) |
30 | 16, 20, 17, 26, 29 | syl13anc 1328 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) = 𝑤 ↔ (𝑤 + 𝐴) = 𝑥)) |
31 | 23, 28, 30 | 3bitrd 294 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → (((𝐴 + 𝑥) − 𝐴) = (𝐴 + 𝑤) ↔ (𝑤 + 𝐴) = 𝑥)) |
32 | | eqcom 2629 |
. . . . . . . . 9
⊢ ((𝐴 + 𝑤) = ((𝐴 + 𝑥) − 𝐴) ↔ ((𝐴 + 𝑥) − 𝐴) = (𝐴 + 𝑤)) |
33 | | eqcom 2629 |
. . . . . . . . 9
⊢ (𝑥 = (𝑤 + 𝐴) ↔ (𝑤 + 𝐴) = 𝑥) |
34 | 31, 32, 33 | 3bitr4g 303 |
. . . . . . . 8
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑤) = ((𝐴 + 𝑥) − 𝐴) ↔ 𝑥 = (𝑤 + 𝐴))) |
35 | 34 | rexbidva 3049 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (∃𝑥 ∈ 𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) − 𝐴) ↔ ∃𝑥 ∈ 𝑆 𝑥 = (𝑤 + 𝐴))) |
36 | 35 | adantlrr 757 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹)) ∧ 𝑤 ∈ 𝑋) → (∃𝑥 ∈ 𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) − 𝐴) ↔ ∃𝑥 ∈ 𝑆 𝑥 = (𝑤 + 𝐴))) |
37 | | ovex 6678 |
. . . . . . 7
⊢ (𝐴 + 𝑤) ∈ V |
38 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑦 = (𝐴 + 𝑤) → (𝑦 = ((𝐴 + 𝑥) − 𝐴) ↔ (𝐴 + 𝑤) = ((𝐴 + 𝑥) − 𝐴))) |
39 | 38 | rexbidv 3052 |
. . . . . . 7
⊢ (𝑦 = (𝐴 + 𝑤) → (∃𝑥 ∈ 𝑆 𝑦 = ((𝐴 + 𝑥) − 𝐴) ↔ ∃𝑥 ∈ 𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) − 𝐴))) |
40 | 9 | rnmpt 5371 |
. . . . . . 7
⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = ((𝐴 + 𝑥) − 𝐴)} |
41 | 37, 39, 40 | elab2 3354 |
. . . . . 6
⊢ ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑆 (𝐴 + 𝑤) = ((𝐴 + 𝑥) − 𝐴)) |
42 | | risset 3062 |
. . . . . 6
⊢ ((𝑤 + 𝐴) ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑆 𝑥 = (𝑤 + 𝐴)) |
43 | 36, 41, 42 | 3bitr4g 303 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹)) ∧ 𝑤 ∈ 𝑋) → ((𝐴 + 𝑤) ∈ ran 𝐹 ↔ (𝑤 + 𝐴) ∈ 𝑆)) |
44 | 14, 43 | bitrd 268 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹)) ∧ 𝑤 ∈ 𝑋) → ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆)) |
45 | 44 | ralrimiva 2966 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹)) → ∀𝑤 ∈ 𝑋 ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆)) |
46 | 1 | elnmz 17633 |
. . 3
⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑤 ∈ 𝑋 ((𝐴 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝐴) ∈ 𝑆))) |
47 | 12, 45, 46 | sylanbrc 698 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹)) → 𝐴 ∈ 𝑁) |
48 | 11, 47 | impbida 877 |
1
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹))) |