![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 683 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: disjxiun 4649 oelim 7614 odi 7659 marypha1lem 8339 dfac12lem2 8966 infunsdom 9036 isf34lem4 9199 distrlem1pr 9847 lcmgcdlem 15319 lcmdvds 15321 drsdirfi 16938 isacs3lem 17166 conjnmzb 17695 psgndif 19948 frlmsslsp 20135 metss2lem 22316 nghmcn 22549 bndth 22757 itg2monolem1 23517 dvmptfsum 23738 ply1divex 23896 itgulm 24162 rpvmasumlem 25176 dchrmusum2 25183 dchrisum0lem2 25207 dchrisum0lem3 25208 mulog2sumlem2 25224 pntibndlem3 25281 wwlksubclwwlks 26925 blocni 27660 superpos 29213 chirredlem2 29250 eulerpartlemgvv 30438 ballotlemfc0 30554 ballotlemfcc 30555 bj-finsumval0 33147 fin2solem 33395 matunitlindflem1 33405 poimirlem28 33437 heicant 33444 ftc1anclem6 33490 ftc1anc 33493 fdc 33541 incsequz 33544 ismtyres 33607 isdrngo2 33757 rngohomco 33773 keridl 33831 linepsubN 35038 pmapsub 35054 mzpcompact2lem 37314 pellex 37399 monotuz 37506 unxpwdom3 37665 dssmapnvod 38314 radcnvrat 38513 fprodexp 39826 fprodabs2 39827 climxrrelem 39981 dvnprodlem1 40161 stoweidlem34 40251 fourierdlem42 40366 elaa2 40451 sge0iunmptlemfi 40630 aacllem 42547 |
Copyright terms: Public domain | W3C validator |