MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjnmzb Structured version   Visualization version   Unicode version

Theorem conjnmzb 17695
Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
conjnmz.1  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
Assertion
Ref Expression
conjnmzb  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  N  <->  ( A  e.  X  /\  S  =  ran  F ) ) )
Distinct variable groups:    x, y,  .-    x, z,  .+ , y    x, A, y, z    y, F, z    x, N    x, G, y, z    x, S, y, z    x, X, y, z
Allowed substitution hints:    F( x)    .- ( z)    N( y, z)

Proof of Theorem conjnmzb
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 conjnmz.1 . . . . 5  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
2 ssrab2 3687 . . . . 5  |-  { y  e.  X  |  A. z  e.  X  (
( y  .+  z
)  e.  S  <->  ( z  .+  y )  e.  S
) }  C_  X
31, 2eqsstri 3635 . . . 4  |-  N  C_  X
4 simpr 477 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  A  e.  N )
53, 4sseldi 3601 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  A  e.  X )
6 conjghm.x . . . 4  |-  X  =  ( Base `  G
)
7 conjghm.p . . . 4  |-  .+  =  ( +g  `  G )
8 conjghm.m . . . 4  |-  .-  =  ( -g `  G )
9 conjsubg.f . . . 4  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
106, 7, 8, 9, 1conjnmz 17694 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
115, 10jca 554 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  ( A  e.  X  /\  S  =  ran  F ) )
12 simprl 794 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A  e.  X )
13 simplrr 801 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  S  =  ran  F )
1413eleq2d 2687 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  S  <->  ( A  .+  w )  e.  ran  F ) )
15 subgrcl 17599 . . . . . . . . . . . . 13  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1615ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  G  e.  Grp )
17 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  A  e.  X )
186subgss 17595 . . . . . . . . . . . . . 14  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
1918ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  /\  w  e.  X )  ->  S  C_  X )
2019sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  x  e.  X )
216, 7, 8grpaddsubass 17505 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  x  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
2216, 17, 20, 17, 21syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
2322eqeq1d 2624 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( ( A  .+  x )  .-  A
)  =  ( A 
.+  w )  <->  ( A  .+  ( x  .-  A
) )  =  ( A  .+  w ) ) )
246, 8grpsubcl 17495 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  A  e.  X )  ->  ( x  .-  A
)  e.  X )
2516, 20, 17, 24syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
x  .-  A )  e.  X )
26 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  w  e.  X )
276, 7grplcan 17477 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( ( x  .-  A )  e.  X  /\  w  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  (
x  .-  A )
)  =  ( A 
.+  w )  <->  ( x  .-  A )  =  w ) )
2816, 25, 26, 17, 27syl13anc 1328 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  (
x  .-  A )
)  =  ( A 
.+  w )  <->  ( x  .-  A )  =  w ) )
296, 7, 8grpsubadd 17503 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( x  e.  X  /\  A  e.  X  /\  w  e.  X
) )  ->  (
( x  .-  A
)  =  w  <->  ( w  .+  A )  =  x ) )
3016, 20, 17, 26, 29syl13anc 1328 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( x  .-  A
)  =  w  <->  ( w  .+  A )  =  x ) )
3123, 28, 303bitrd 294 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( ( A  .+  x )  .-  A
)  =  ( A 
.+  w )  <->  ( w  .+  A )  =  x ) )
32 eqcom 2629 . . . . . . . . 9  |-  ( ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  ( ( A  .+  x )  .-  A )  =  ( A  .+  w ) )
33 eqcom 2629 . . . . . . . . 9  |-  ( x  =  ( w  .+  A )  <->  ( w  .+  A )  =  x )
3431, 32, 333bitr4g 303 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  w
)  =  ( ( A  .+  x ) 
.-  A )  <->  x  =  ( w  .+  A ) ) )
3534rexbidva 3049 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  /\  w  e.  X )  ->  ( E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  E. x  e.  S  x  =  ( w  .+  A ) ) )
3635adantlrr 757 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  ( E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  E. x  e.  S  x  =  ( w  .+  A ) ) )
37 ovex 6678 . . . . . . 7  |-  ( A 
.+  w )  e. 
_V
38 eqeq1 2626 . . . . . . . 8  |-  ( y  =  ( A  .+  w )  ->  (
y  =  ( ( A  .+  x ) 
.-  A )  <->  ( A  .+  w )  =  ( ( A  .+  x
)  .-  A )
) )
3938rexbidv 3052 . . . . . . 7  |-  ( y  =  ( A  .+  w )  ->  ( E. x  e.  S  y  =  ( ( A  .+  x )  .-  A )  <->  E. x  e.  S  ( A  .+  w )  =  ( ( A  .+  x
)  .-  A )
) )
409rnmpt 5371 . . . . . . 7  |-  ran  F  =  { y  |  E. x  e.  S  y  =  ( ( A 
.+  x )  .-  A ) }
4137, 39, 40elab2 3354 . . . . . 6  |-  ( ( A  .+  w )  e.  ran  F  <->  E. x  e.  S  ( A  .+  w )  =  ( ( A  .+  x
)  .-  A )
)
42 risset 3062 . . . . . 6  |-  ( ( w  .+  A )  e.  S  <->  E. x  e.  S  x  =  ( w  .+  A ) )
4336, 41, 423bitr4g 303 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  ran  F  <->  ( w  .+  A )  e.  S ) )
4414, 43bitrd 268 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  S  <->  ( w  .+  A )  e.  S
) )
4544ralrimiva 2966 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A. w  e.  X  ( ( A  .+  w )  e.  S  <->  ( w  .+  A )  e.  S
) )
461elnmz 17633 . . 3  |-  ( A  e.  N  <->  ( A  e.  X  /\  A. w  e.  X  ( ( A  .+  w )  e.  S  <->  ( w  .+  A )  e.  S
) ) )
4712, 45, 46sylanbrc 698 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A  e.  N )
4811, 47impbida 877 1  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  N  <->  ( A  e.  X  /\  S  =  ran  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422   -gcsg 17424  SubGrpcsubg 17588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591
This theorem is referenced by:  sylow3lem6  18047
  Copyright terms: Public domain W3C validator