MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgrop Structured version   Visualization version   GIF version

Theorem cplgrop 26333
Description: A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.)
Assertion
Ref Expression
cplgrop (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph)

Proof of Theorem cplgrop
Dummy variables 𝑒 𝑔 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2622 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iscplgredg 26313 . . . . 5 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
4 edgval 25941 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
54a1i 11 . . . . . 6 (𝐺 ∈ ComplGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
6 simpl 473 . . . . . . . . . . . 12 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (Vtx‘𝑔) = (Vtx‘𝐺))
76adantl 482 . . . . . . . . . . 11 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Vtx‘𝑔) = (Vtx‘𝐺))
86difeq1d 3727 . . . . . . . . . . . . 13 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → ((Vtx‘𝑔) ∖ {𝑣}) = ((Vtx‘𝐺) ∖ {𝑣}))
98adantl 482 . . . . . . . . . . . 12 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → ((Vtx‘𝑔) ∖ {𝑣}) = ((Vtx‘𝐺) ∖ {𝑣}))
10 edgval 25941 . . . . . . . . . . . . . . . 16 (Edg‘𝑔) = ran (iEdg‘𝑔)
11 simpr 477 . . . . . . . . . . . . . . . . 17 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (iEdg‘𝑔) = (iEdg‘𝐺))
1211rneqd 5353 . . . . . . . . . . . . . . . 16 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → ran (iEdg‘𝑔) = ran (iEdg‘𝐺))
1310, 12syl5eq 2668 . . . . . . . . . . . . . . 15 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (Edg‘𝑔) = ran (iEdg‘𝐺))
1413adantl 482 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝑔) = ran (iEdg‘𝐺))
15 simpl 473 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1614, 15eqtr4d 2659 . . . . . . . . . . . . 13 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝑔) = (Edg‘𝐺))
1716rexeqdv 3145 . . . . . . . . . . . 12 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
189, 17raleqbidv 3152 . . . . . . . . . . 11 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
197, 18raleqbidv 3152 . . . . . . . . . 10 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
2019biimpar 502 . . . . . . . . 9 ((((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) → ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒)
21 vex 3203 . . . . . . . . . 10 𝑔 ∈ V
22 eqid 2622 . . . . . . . . . . 11 (Vtx‘𝑔) = (Vtx‘𝑔)
23 eqid 2622 . . . . . . . . . . 11 (Edg‘𝑔) = (Edg‘𝑔)
2422, 23iscplgredg 26313 . . . . . . . . . 10 (𝑔 ∈ V → (𝑔 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒))
2521, 24ax-mp 5 . . . . . . . . 9 (𝑔 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒)
2620, 25sylibr 224 . . . . . . . 8 ((((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) → 𝑔 ∈ ComplGraph)
2726expcom 451 . . . . . . 7 (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → 𝑔 ∈ ComplGraph))
2827expd 452 . . . . . 6 (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → ((Edg‘𝐺) = ran (iEdg‘𝐺) → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
295, 28syl5com 31 . . . . 5 (𝐺 ∈ ComplGraph → (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
303, 29sylbid 230 . . . 4 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
3130pm2.43i 52 . . 3 (𝐺 ∈ ComplGraph → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph))
3231alrimiv 1855 . 2 (𝐺 ∈ ComplGraph → ∀𝑔(((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph))
33 fvexd 6203 . 2 (𝐺 ∈ ComplGraph → (Vtx‘𝐺) ∈ V)
34 fvexd 6203 . 2 (𝐺 ∈ ComplGraph → (iEdg‘𝐺) ∈ V)
3532, 33, 34gropeld 25925 1 (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  wss 3574  {csn 4177  {cpr 4179  cop 4183  ran crn 5115  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939  ComplGraphccplgr 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-edg 25940  df-nbgr 26228  df-uvtxa 26230  df-cplgr 26231
This theorem is referenced by:  cusgrop  26334
  Copyright terms: Public domain W3C validator