MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedekindle Structured version   Visualization version   GIF version

Theorem dedekindle 10201
Description: The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013.)
Assertion
Ref Expression
dedekindle ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem dedekindle
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1067 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐴 ⊆ ℝ)
2 simpr2 1068 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐵 ⊆ ℝ)
3 simp1 1061 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴𝐵) = ∅)
4 simpl 473 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → 𝑥𝐴)
5 disjel 4023 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
63, 4, 5syl2an 494 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → ¬ 𝑥𝐵)
7 eleq1 2689 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
87biimpcd 239 . . . . . . . . . . 11 (𝑦𝐵 → (𝑦 = 𝑥𝑥𝐵))
98necon3bd 2808 . . . . . . . . . 10 (𝑦𝐵 → (¬ 𝑥𝐵𝑦𝑥))
109ad2antll 765 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (¬ 𝑥𝐵𝑦𝑥))
116, 10mpd 15 . . . . . . . 8 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝑥)
12 simp2 1062 . . . . . . . . . . 11 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ)
13 ssel2 3598 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1412, 4, 13syl2an 494 . . . . . . . . . 10 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ ℝ)
15 simp3 1063 . . . . . . . . . . 11 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐵 ⊆ ℝ)
16 simpr 477 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → 𝑦𝐵)
17 ssel2 3598 . . . . . . . . . . 11 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
1815, 16, 17syl2an 494 . . . . . . . . . 10 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑦 ∈ ℝ)
1914, 18ltlend 10182 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2019biimprd 238 . . . . . . . 8 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → ((𝑥𝑦𝑦𝑥) → 𝑥 < 𝑦))
2111, 20mpan2d 710 . . . . . . 7 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝑦𝑥 < 𝑦))
2221ralimdvva 2964 . . . . . 6 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦))
23223exp 1264 . . . . 5 ((𝐴𝐵) = ∅ → (𝐴 ⊆ ℝ → (𝐵 ⊆ ℝ → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦))))
24233imp2 1282 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
25 dedekind 10200 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
261, 2, 24, 25syl3anc 1326 . . 3 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
2726ex 450 . 2 ((𝐴𝐵) = ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
28 n0 3931 . . 3 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝐵))
29 simp1 1061 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 ⊆ ℝ)
30 inss1 3833 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
3130sseli 3599 . . . . . . 7 (𝑤 ∈ (𝐴𝐵) → 𝑤𝐴)
32 ssel2 3598 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
3329, 31, 32syl2an 494 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → 𝑤 ∈ ℝ)
34 nfv 1843 . . . . . . . . 9 𝑥 𝐴 ⊆ ℝ
35 nfv 1843 . . . . . . . . 9 𝑥 𝐵 ⊆ ℝ
36 nfra1 2941 . . . . . . . . 9 𝑥𝑥𝐴𝑦𝐵 𝑥𝑦
3734, 35, 36nf3an 1831 . . . . . . . 8 𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
38 nfv 1843 . . . . . . . 8 𝑥 𝑤 ∈ (𝐴𝐵)
3937, 38nfan 1828 . . . . . . 7 𝑥((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵))
40 nfv 1843 . . . . . . . . . . 11 𝑦 𝐴 ⊆ ℝ
41 nfv 1843 . . . . . . . . . . 11 𝑦 𝐵 ⊆ ℝ
42 nfra2 2946 . . . . . . . . . . 11 𝑦𝑥𝐴𝑦𝐵 𝑥𝑦
4340, 41, 42nf3an 1831 . . . . . . . . . 10 𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
44 nfv 1843 . . . . . . . . . 10 𝑦(𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)
4543, 44nfan 1828 . . . . . . . . 9 𝑦((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴))
46 rsp 2929 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑥𝐴 → ∀𝑦𝐵 𝑥𝑦))
47 inss2 3834 . . . . . . . . . . . . . . . . . 18 (𝐴𝐵) ⊆ 𝐵
4847sseli 3599 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (𝐴𝐵) → 𝑤𝐵)
49 breq2 4657 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
5049rspccv 3306 . . . . . . . . . . . . . . . . 17 (∀𝑦𝐵 𝑥𝑦 → (𝑤𝐵𝑥𝑤))
5148, 50syl5 34 . . . . . . . . . . . . . . . 16 (∀𝑦𝐵 𝑥𝑦 → (𝑤 ∈ (𝐴𝐵) → 𝑥𝑤))
5246, 51syl6 35 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑥𝐴 → (𝑤 ∈ (𝐴𝐵) → 𝑥𝑤)))
5352com23 86 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑤 ∈ (𝐴𝐵) → (𝑥𝐴𝑥𝑤)))
5453imp32 449 . . . . . . . . . . . . 13 ((∀𝑥𝐴𝑦𝐵 𝑥𝑦 ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → 𝑥𝑤)
55543ad2antl3 1225 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → 𝑥𝑤)
5655adantr 481 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → 𝑥𝑤)
57 simp3 1063 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
5831adantr 481 . . . . . . . . . . . . 13 ((𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴) → 𝑤𝐴)
59 breq1 4656 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
6059ralbidv 2986 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑦𝐵 𝑥𝑦 ↔ ∀𝑦𝐵 𝑤𝑦))
6160rspccva 3308 . . . . . . . . . . . . 13 ((∀𝑥𝐴𝑦𝐵 𝑥𝑦𝑤𝐴) → ∀𝑦𝐵 𝑤𝑦)
6257, 58, 61syl2an 494 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → ∀𝑦𝐵 𝑤𝑦)
6362r19.21bi 2932 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → 𝑤𝑦)
6456, 63jca 554 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → (𝑥𝑤𝑤𝑦))
6564ex 450 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → (𝑦𝐵 → (𝑥𝑤𝑤𝑦)))
6645, 65ralrimi 2957 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → ∀𝑦𝐵 (𝑥𝑤𝑤𝑦))
6766expr 643 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → (𝑥𝐴 → ∀𝑦𝐵 (𝑥𝑤𝑤𝑦)))
6839, 67ralrimi 2957 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦))
69 breq2 4657 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑥𝑧𝑥𝑤))
70 breq1 4656 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
7169, 70anbi12d 747 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑥𝑧𝑧𝑦) ↔ (𝑥𝑤𝑤𝑦)))
72712ralbidv 2989 . . . . . . 7 (𝑧 = 𝑤 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦)))
7372rspcev 3309 . . . . . 6 ((𝑤 ∈ ℝ ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
7433, 68, 73syl2anc 693 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
7574expcom 451 . . . 4 (𝑤 ∈ (𝐴𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7675exlimiv 1858 . . 3 (∃𝑤 𝑤 ∈ (𝐴𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7728, 76sylbi 207 . 2 ((𝐴𝐵) ≠ ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7827, 77pm2.61ine 2877 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  cin 3573  wss 3574  c0 3915   class class class wbr 4653  cr 9935   < clt 10074  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080
This theorem is referenced by:  axcontlem10  25853
  Copyright terms: Public domain W3C validator