MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom2 Structured version   Visualization version   Unicode version

Theorem dfom2 7067
Description: An alternate definition of the set of natural numbers  om. Definition 7.28 of [TakeutiZaring] p. 42, who use the symbol KI for the inner class builder of non-limit ordinal numbers (see nlimon 7051). (Contributed by NM, 1-Nov-2004.)
Assertion
Ref Expression
dfom2  |-  om  =  { x  e.  On  |  suc  x  C_  { y  e.  On  |  -.  Lim  y } }

Proof of Theorem dfom2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-om 7066 . 2  |-  om  =  { x  e.  On  |  A. z ( Lim  z  ->  x  e.  z ) }
2 onsssuc 5813 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  x  e.  On )  ->  ( z  C_  x  <->  z  e.  suc  x ) )
3 ontri1 5757 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  x  e.  On )  ->  ( z  C_  x  <->  -.  x  e.  z ) )
42, 3bitr3d 270 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  x  e.  On )  ->  ( z  e.  suc  x 
<->  -.  x  e.  z ) )
54ancoms 469 . . . . . . . . 9  |-  ( ( x  e.  On  /\  z  e.  On )  ->  ( z  e.  suc  x 
<->  -.  x  e.  z ) )
6 limeq 5735 . . . . . . . . . . . 12  |-  ( y  =  z  ->  ( Lim  y  <->  Lim  z ) )
76notbid 308 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( -.  Lim  y  <->  -.  Lim  z
) )
87elrab 3363 . . . . . . . . . 10  |-  ( z  e.  { y  e.  On  |  -.  Lim  y }  <->  ( z  e.  On  /\  -.  Lim  z ) )
98a1i 11 . . . . . . . . 9  |-  ( ( x  e.  On  /\  z  e.  On )  ->  ( z  e.  {
y  e.  On  |  -.  Lim  y }  <->  ( z  e.  On  /\  -.  Lim  z ) ) )
105, 9imbi12d 334 . . . . . . . 8  |-  ( ( x  e.  On  /\  z  e.  On )  ->  ( ( z  e. 
suc  x  ->  z  e.  { y  e.  On  |  -.  Lim  y } )  <->  ( -.  x  e.  z  ->  ( z  e.  On  /\  -.  Lim  z ) ) ) )
1110pm5.74da 723 . . . . . . 7  |-  ( x  e.  On  ->  (
( z  e.  On  ->  ( z  e.  suc  x  ->  z  e.  {
y  e.  On  |  -.  Lim  y } ) )  <->  ( z  e.  On  ->  ( -.  x  e.  z  ->  ( z  e.  On  /\  -.  Lim  z ) ) ) ) )
12 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
13 limelon 5788 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  Lim  z )  ->  z  e.  On )
1412, 13mpan 706 . . . . . . . . . 10  |-  ( Lim  z  ->  z  e.  On )
1514pm4.71ri 665 . . . . . . . . 9  |-  ( Lim  z  <->  ( z  e.  On  /\  Lim  z
) )
1615imbi1i 339 . . . . . . . 8  |-  ( ( Lim  z  ->  x  e.  z )  <->  ( (
z  e.  On  /\  Lim  z )  ->  x  e.  z ) )
17 impexp 462 . . . . . . . 8  |-  ( ( ( z  e.  On  /\ 
Lim  z )  ->  x  e.  z )  <->  ( z  e.  On  ->  ( Lim  z  ->  x  e.  z ) ) )
18 con34b 306 . . . . . . . . . 10  |-  ( ( Lim  z  ->  x  e.  z )  <->  ( -.  x  e.  z  ->  -. 
Lim  z ) )
19 ibar 525 . . . . . . . . . . 11  |-  ( z  e.  On  ->  ( -.  Lim  z  <->  ( z  e.  On  /\  -.  Lim  z ) ) )
2019imbi2d 330 . . . . . . . . . 10  |-  ( z  e.  On  ->  (
( -.  x  e.  z  ->  -.  Lim  z
)  <->  ( -.  x  e.  z  ->  ( z  e.  On  /\  -.  Lim  z ) ) ) )
2118, 20syl5bb 272 . . . . . . . . 9  |-  ( z  e.  On  ->  (
( Lim  z  ->  x  e.  z )  <->  ( -.  x  e.  z  ->  ( z  e.  On  /\  -.  Lim  z ) ) ) )
2221pm5.74i 260 . . . . . . . 8  |-  ( ( z  e.  On  ->  ( Lim  z  ->  x  e.  z ) )  <->  ( z  e.  On  ->  ( -.  x  e.  z  ->  ( z  e.  On  /\  -.  Lim  z ) ) ) )
2316, 17, 223bitri 286 . . . . . . 7  |-  ( ( Lim  z  ->  x  e.  z )  <->  ( z  e.  On  ->  ( -.  x  e.  z  ->  ( z  e.  On  /\  -.  Lim  z ) ) ) )
2411, 23syl6rbbr 279 . . . . . 6  |-  ( x  e.  On  ->  (
( Lim  z  ->  x  e.  z )  <->  ( z  e.  On  ->  ( z  e.  suc  x  ->  z  e.  { y  e.  On  |  -.  Lim  y } ) ) ) )
25 impexp 462 . . . . . . 7  |-  ( ( ( z  e.  On  /\  z  e.  suc  x
)  ->  z  e.  { y  e.  On  |  -.  Lim  y } )  <-> 
( z  e.  On  ->  ( z  e.  suc  x  ->  z  e.  {
y  e.  On  |  -.  Lim  y } ) ) )
26 simpr 477 . . . . . . . . 9  |-  ( ( z  e.  On  /\  z  e.  suc  x )  ->  z  e.  suc  x )
27 suceloni 7013 . . . . . . . . . . 11  |-  ( x  e.  On  ->  suc  x  e.  On )
28 onelon 5748 . . . . . . . . . . . 12  |-  ( ( suc  x  e.  On  /\  z  e.  suc  x
)  ->  z  e.  On )
2928ex 450 . . . . . . . . . . 11  |-  ( suc  x  e.  On  ->  ( z  e.  suc  x  ->  z  e.  On ) )
3027, 29syl 17 . . . . . . . . . 10  |-  ( x  e.  On  ->  (
z  e.  suc  x  ->  z  e.  On ) )
3130ancrd 577 . . . . . . . . 9  |-  ( x  e.  On  ->  (
z  e.  suc  x  ->  ( z  e.  On  /\  z  e.  suc  x
) ) )
3226, 31impbid2 216 . . . . . . . 8  |-  ( x  e.  On  ->  (
( z  e.  On  /\  z  e.  suc  x
)  <->  z  e.  suc  x ) )
3332imbi1d 331 . . . . . . 7  |-  ( x  e.  On  ->  (
( ( z  e.  On  /\  z  e. 
suc  x )  -> 
z  e.  { y  e.  On  |  -.  Lim  y } )  <->  ( z  e.  suc  x  ->  z  e.  { y  e.  On  |  -.  Lim  y } ) ) )
3425, 33syl5bbr 274 . . . . . 6  |-  ( x  e.  On  ->  (
( z  e.  On  ->  ( z  e.  suc  x  ->  z  e.  {
y  e.  On  |  -.  Lim  y } ) )  <->  ( z  e. 
suc  x  ->  z  e.  { y  e.  On  |  -.  Lim  y } ) ) )
3524, 34bitrd 268 . . . . 5  |-  ( x  e.  On  ->  (
( Lim  z  ->  x  e.  z )  <->  ( z  e.  suc  x  ->  z  e.  { y  e.  On  |  -.  Lim  y } ) ) )
3635albidv 1849 . . . 4  |-  ( x  e.  On  ->  ( A. z ( Lim  z  ->  x  e.  z )  <->  A. z ( z  e. 
suc  x  ->  z  e.  { y  e.  On  |  -.  Lim  y } ) ) )
37 dfss2 3591 . . . 4  |-  ( suc  x  C_  { y  e.  On  |  -.  Lim  y }  <->  A. z ( z  e.  suc  x  -> 
z  e.  { y  e.  On  |  -.  Lim  y } ) )
3836, 37syl6bbr 278 . . 3  |-  ( x  e.  On  ->  ( A. z ( Lim  z  ->  x  e.  z )  <->  suc  x  C_  { y  e.  On  |  -.  Lim  y } ) )
3938rabbiia 3185 . 2  |-  { x  e.  On  |  A. z
( Lim  z  ->  x  e.  z ) }  =  { x  e.  On  |  suc  x  C_ 
{ y  e.  On  |  -.  Lim  y } }
401, 39eqtri 2644 1  |-  om  =  { x  e.  On  |  suc  x  C_  { y  e.  On  |  -.  Lim  y } }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   Oncon0 5723   Lim wlim 5724   suc csuc 5725   omcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066
This theorem is referenced by:  omsson  7069
  Copyright terms: Public domain W3C validator