| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfom2 | Structured version Visualization version Unicode version | ||
| Description: An alternate definition
of the set of natural numbers |
| Ref | Expression |
|---|---|
| dfom2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-om 7066 |
. 2
| |
| 2 | onsssuc 5813 |
. . . . . . . . . . 11
| |
| 3 | ontri1 5757 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | bitr3d 270 |
. . . . . . . . . 10
|
| 5 | 4 | ancoms 469 |
. . . . . . . . 9
|
| 6 | limeq 5735 |
. . . . . . . . . . . 12
| |
| 7 | 6 | notbid 308 |
. . . . . . . . . . 11
|
| 8 | 7 | elrab 3363 |
. . . . . . . . . 10
|
| 9 | 8 | a1i 11 |
. . . . . . . . 9
|
| 10 | 5, 9 | imbi12d 334 |
. . . . . . . 8
|
| 11 | 10 | pm5.74da 723 |
. . . . . . 7
|
| 12 | vex 3203 |
. . . . . . . . . . 11
| |
| 13 | limelon 5788 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | mpan 706 |
. . . . . . . . . 10
|
| 15 | 14 | pm4.71ri 665 |
. . . . . . . . 9
|
| 16 | 15 | imbi1i 339 |
. . . . . . . 8
|
| 17 | impexp 462 |
. . . . . . . 8
| |
| 18 | con34b 306 |
. . . . . . . . . 10
| |
| 19 | ibar 525 |
. . . . . . . . . . 11
| |
| 20 | 19 | imbi2d 330 |
. . . . . . . . . 10
|
| 21 | 18, 20 | syl5bb 272 |
. . . . . . . . 9
|
| 22 | 21 | pm5.74i 260 |
. . . . . . . 8
|
| 23 | 16, 17, 22 | 3bitri 286 |
. . . . . . 7
|
| 24 | 11, 23 | syl6rbbr 279 |
. . . . . 6
|
| 25 | impexp 462 |
. . . . . . 7
| |
| 26 | simpr 477 |
. . . . . . . . 9
| |
| 27 | suceloni 7013 |
. . . . . . . . . . 11
| |
| 28 | onelon 5748 |
. . . . . . . . . . . 12
| |
| 29 | 28 | ex 450 |
. . . . . . . . . . 11
|
| 30 | 27, 29 | syl 17 |
. . . . . . . . . 10
|
| 31 | 30 | ancrd 577 |
. . . . . . . . 9
|
| 32 | 26, 31 | impbid2 216 |
. . . . . . . 8
|
| 33 | 32 | imbi1d 331 |
. . . . . . 7
|
| 34 | 25, 33 | syl5bbr 274 |
. . . . . 6
|
| 35 | 24, 34 | bitrd 268 |
. . . . 5
|
| 36 | 35 | albidv 1849 |
. . . 4
|
| 37 | dfss2 3591 |
. . . 4
| |
| 38 | 36, 37 | syl6bbr 278 |
. . 3
|
| 39 | 38 | rabbiia 3185 |
. 2
|
| 40 | 1, 39 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-om 7066 |
| This theorem is referenced by: omsson 7069 |
| Copyright terms: Public domain | W3C validator |