Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib1dim Structured version   Visualization version   Unicode version

Theorem dib1dim 36454
Description: Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dib1dim.b  |-  B  =  ( Base `  K
)
dib1dim.h  |-  H  =  ( LHyp `  K
)
dib1dim.t  |-  T  =  ( ( LTrn `  K
) `  W )
dib1dim.r  |-  R  =  ( ( trL `  K
) `  W )
dib1dim.e  |-  E  =  ( ( TEndo `  K
) `  W )
dib1dim.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
dib1dim.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dib1dim  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  e.  ( T  X.  E )  |  E. s  e.  E  g  =  <. ( s `
 F ) ,  O >. } )
Distinct variable groups:    B, h    g, s, E    g, F, s    H, s    h, s, K    g, O, s    R, s    g, h, T, s    h, W, s
Allowed substitution hints:    B( g, s)    R( g, h)    E( h)    F( h)    H( g, h)    I(
g, h, s)    K( g)    O( h)    W( g)

Proof of Theorem dib1dim
Dummy variables  f 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dib1dim.b . . . . 5  |-  B  =  ( Base `  K
)
3 dib1dim.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 dib1dim.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
5 dib1dim.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
62, 3, 4, 5trlcl 35451 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)
7 eqid 2622 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
87, 3, 4, 5trlle 35471 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F ) ( le
`  K ) W )
9 dib1dim.o . . . . 5  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
10 eqid 2622 . . . . 5  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
11 dib1dim.i . . . . 5  |-  I  =  ( ( DIsoB `  K
) `  W )
122, 7, 3, 4, 9, 10, 11dibval2 36433 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R `
 F )  e.  B  /\  ( R `
 F ) ( le `  K ) W ) )  -> 
( I `  ( R `  F )
)  =  ( ( ( ( DIsoA `  K
) `  W ) `  ( R `  F
) )  X.  { O } ) )
131, 6, 8, 12syl12anc 1324 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  ( ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  X. 
{ O } ) )
14 relxp 5227 . . . 4  |-  Rel  (
( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  X. 
{ O } )
15 opelxp 5146 . . . . 5  |-  ( <.
f ,  t >.  e.  ( ( ( (
DIsoA `  K ) `  W ) `  ( R `  F )
)  X.  { O } )  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  /\  t  e.  { O } ) )
16 dib1dim.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
173, 4, 5, 16, 10dia1dim 36350 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( DIsoA `  K ) `  W ) `  ( R `  F )
)  =  { f  |  E. s  e.  E  f  =  ( s `  F ) } )
1817abeq2d 2734 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  <->  E. s  e.  E  f  =  ( s `  F
) ) )
1918anbi1d 741 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  ( R `  F )
)  /\  t  e.  { O } )  <->  ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } ) ) )
203, 4, 16tendocl 36055 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( s `  F )  e.  T
)
21203expa 1265 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E )  /\  F  e.  T )  ->  (
s `  F )  e.  T )
2221an32s 846 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
s `  F )  e.  T )
232, 3, 4, 16, 9tendo0cl 36078 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
2423ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  O  e.  E )
2522, 24jca 554 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
( s `  F
)  e.  T  /\  O  e.  E )
)
26 eleq1 2689 . . . . . . . . . . 11  |-  ( f  =  ( s `  F )  ->  (
f  e.  T  <->  ( s `  F )  e.  T
) )
27 eleq1 2689 . . . . . . . . . . 11  |-  ( t  =  O  ->  (
t  e.  E  <->  O  e.  E ) )
2826, 27bi2anan9 917 . . . . . . . . . 10  |-  ( ( f  =  ( s `
 F )  /\  t  =  O )  ->  ( ( f  e.  T  /\  t  e.  E )  <->  ( (
s `  F )  e.  T  /\  O  e.  E ) ) )
2925, 28syl5ibrcom 237 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
( f  =  ( s `  F )  /\  t  =  O )  ->  ( f  e.  T  /\  t  e.  E ) ) )
3029rexlimdva 3031 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )  ->  ( f  e.  T  /\  t  e.  E
) ) )
3130pm4.71rd 667 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )  <->  ( ( f  e.  T  /\  t  e.  E
)  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
32 velsn 4193 . . . . . . . . 9  |-  ( t  e.  { O }  <->  t  =  O )
3332anbi2i 730 . . . . . . . 8  |-  ( ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } )  <-> 
( E. s  e.  E  f  =  ( s `  F )  /\  t  =  O ) )
34 r19.41v 3089 . . . . . . . 8  |-  ( E. s  e.  E  ( f  =  ( s `
 F )  /\  t  =  O )  <->  ( E. s  e.  E  f  =  ( s `  F )  /\  t  =  O ) )
3533, 34bitr4i 267 . . . . . . 7  |-  ( ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } )  <->  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) )
36 df-3an 1039 . . . . . . 7  |-  ( ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `
 F )  /\  t  =  O )
)  <->  ( ( f  e.  T  /\  t  e.  E )  /\  E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )
) )
3731, 35, 363bitr4g 303 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } )  <-> 
( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
3819, 37bitrd 268 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  ( R `  F )
)  /\  t  e.  { O } )  <->  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
3915, 38syl5bb 272 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( <. f ,  t >.  e.  ( ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  X. 
{ O } )  <-> 
( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
4014, 39opabbi2dv 5271 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( ( DIsoA `  K
) `  W ) `  ( R `  F
) )  X.  { O } )  =  { <. f ,  t >.  |  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) } )
4113, 40eqtrd 2656 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  { <. f ,  t >.  |  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) } )
42 eqeq1 2626 . . . . 5  |-  ( g  =  <. f ,  t
>.  ->  ( g  = 
<. ( s `  F
) ,  O >.  <->  <. f ,  t >.  =  <. ( s `  F ) ,  O >. )
)
43 vex 3203 . . . . . 6  |-  f  e. 
_V
44 vex 3203 . . . . . 6  |-  t  e. 
_V
4543, 44opth 4945 . . . . 5  |-  ( <.
f ,  t >.  =  <. ( s `  F ) ,  O >.  <-> 
( f  =  ( s `  F )  /\  t  =  O ) )
4642, 45syl6bb 276 . . . 4  |-  ( g  =  <. f ,  t
>.  ->  ( g  = 
<. ( s `  F
) ,  O >.  <->  (
f  =  ( s `
 F )  /\  t  =  O )
) )
4746rexbidv 3052 . . 3  |-  ( g  =  <. f ,  t
>.  ->  ( E. s  e.  E  g  =  <. ( s `  F
) ,  O >.  <->  E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )
) )
4847rabxp 5154 . 2  |-  { g  e.  ( T  X.  E )  |  E. s  e.  E  g  =  <. ( s `  F ) ,  O >. }  =  { <. f ,  t >.  |  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `
 F )  /\  t  =  O )
) }
4941, 48syl6eqr 2674 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  e.  ( T  X.  E )  |  E. s  e.  E  g  =  <. ( s `
 F ) ,  O >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   {csn 4177   <.cop 4183   class class class wbr 4653   {copab 4712    |-> cmpt 4729    _I cid 5023    X. cxp 5112    |` cres 5116   ` cfv 5888   Basecbs 15857   lecple 15948   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445   TEndoctendo 36040   DIsoAcdia 36317   DIsoBcdib 36427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-disoa 36318  df-dib 36428
This theorem is referenced by:  dib1dim2  36457
  Copyright terms: Public domain W3C validator