Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem2N Structured version   Visualization version   GIF version

Theorem dihmeetlem2N 36588
Description: Isomorphism H of a conjunction. (Contributed by NM, 22-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem2.b 𝐵 = (Base‘𝐾)
dihmeetlem2.m = (meet‘𝐾)
dihmeetlem2.h 𝐻 = (LHyp‘𝐾)
dihmeetlem2.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem2.l = (le‘𝐾)
dihmeetlem2.j = (join‘𝐾)
dihmeetlem2.a 𝐴 = (Atoms‘𝐾)
dihmeetlem2.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihmeetlem2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihmeetlem2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihmeetlem2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihmeetlem2.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihmeetlem2.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Proof of Theorem dihmeetlem2N
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
2 dihmeetlem2.m . . . . . 6 = (meet‘𝐾)
3 simp1l 1085 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
4 simp2l 1087 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
5 simp3l 1089 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
61, 2, 3, 4, 5meetval 17019 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
76fveq2d 6195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})))
8 simp1 1061 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 dihmeetlem2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 dihmeetlem2.l . . . . . . . . 9 = (le‘𝐾)
11 dihmeetlem2.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
12 eqid 2622 . . . . . . . . 9 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
139, 10, 11, 12dibeldmN 36447 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
1413biimpar 502 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊))
15143adant3 1081 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊))
169, 10, 11, 12dibeldmN 36447 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
1716biimpar 502 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊))
18173adant2 1080 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊))
19 prssg 4350 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)))
204, 5, 19syl2anc 693 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝑋 ∈ dom ((DIsoB‘𝐾)‘𝑊) ∧ 𝑌 ∈ dom ((DIsoB‘𝐾)‘𝑊)) ↔ {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊)))
2115, 18, 20mpbi2and 956 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → {𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊))
22 prnzg 4311 . . . . . 6 (𝑋𝐵 → {𝑋, 𝑌} ≠ ∅)
234, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → {𝑋, 𝑌} ≠ ∅)
241, 11, 12dibglbN 36455 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑋, 𝑌} ⊆ dom ((DIsoB‘𝐾)‘𝑊) ∧ {𝑋, 𝑌} ≠ ∅)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
258, 21, 23, 24syl12anc 1324 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
267, 25eqtrd 2656 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
27 hllat 34650 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
283, 27syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
299, 2latmcl 17052 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3028, 4, 5, 29syl3anc 1326 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) ∈ 𝐵)
31 simp1r 1086 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐻)
329, 11lhpbase 35284 . . . . . 6 (𝑊𝐻𝑊𝐵)
3331, 32syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑊𝐵)
349, 10, 2latmle1 17076 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
3528, 4, 5, 34syl3anc 1326 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑋)
36 simp2r 1088 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋 𝑊)
379, 10, 28, 30, 4, 33, 35, 36lattrd 17058 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑊)
38 dihmeetlem2.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
399, 10, 11, 38, 12dihvalb 36526 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) 𝑊)) → (𝐼‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)))
408, 30, 37, 39syl12anc 1324 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑋 𝑌)))
41 simpl1 1064 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐾 ∈ HL ∧ 𝑊𝐻))
42 vex 3203 . . . . . . 7 𝑥 ∈ V
4342elpr 4198 . . . . . 6 (𝑥 ∈ {𝑋, 𝑌} ↔ (𝑥 = 𝑋𝑥 = 𝑌))
44 simpl2 1065 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → (𝑋𝐵𝑋 𝑊))
45 eleq1 2689 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐵𝑋𝐵))
46 breq1 4656 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
4745, 46anbi12d 747 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑥𝐵𝑥 𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
4847adantl 482 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → ((𝑥𝐵𝑥 𝑊) ↔ (𝑋𝐵𝑋 𝑊)))
4944, 48mpbird 247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑋) → (𝑥𝐵𝑥 𝑊))
50 simpl3 1066 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → (𝑌𝐵𝑌 𝑊))
51 eleq1 2689 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝑥𝐵𝑌𝐵))
52 breq1 4656 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝑥 𝑊𝑌 𝑊))
5351, 52anbi12d 747 . . . . . . . . 9 (𝑥 = 𝑌 → ((𝑥𝐵𝑥 𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
5453adantl 482 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → ((𝑥𝐵𝑥 𝑊) ↔ (𝑌𝐵𝑌 𝑊)))
5550, 54mpbird 247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 = 𝑌) → (𝑥𝐵𝑥 𝑊))
5649, 55jaodan 826 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑥 = 𝑋𝑥 = 𝑌)) → (𝑥𝐵𝑥 𝑊))
5743, 56sylan2b 492 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝑥𝐵𝑥 𝑊))
589, 10, 11, 38, 12dihvalb 36526 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑥 𝑊)) → (𝐼𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥))
5941, 57, 58syl2anc 693 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑥 ∈ {𝑋, 𝑌}) → (𝐼𝑥) = (((DIsoB‘𝐾)‘𝑊)‘𝑥))
6059iineq2dv 4543 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = 𝑥 ∈ {𝑋, 𝑌} (((DIsoB‘𝐾)‘𝑊)‘𝑥))
6126, 40, 603eqtr4d 2666 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
62 fveq2 6191 . . . 4 (𝑥 = 𝑋 → (𝐼𝑥) = (𝐼𝑋))
63 fveq2 6191 . . . 4 (𝑥 = 𝑌 → (𝐼𝑥) = (𝐼𝑌))
6462, 63iinxprg 4601 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
654, 5, 64syl2anc 693 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
6661, 65eqtrd 2656 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cin 3573  wss 3574  c0 3915  {cpr 4179   ciin 4521   class class class wbr 4653  cmpt 4729   I cid 5023  dom cdm 5114  cres 5116  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  lecple 15948  occoc 15949  glbcglb 16943  joincjn 16944  meetcmee 16945  Latclat 17045  Atomscatm 34550  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445  TEndoctendo 36040  DIsoBcdib 36427  DIsoHcdih 36517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-disoa 36318  df-dib 36428  df-dih 36518
This theorem is referenced by:  dihmeetbN  36592
  Copyright terms: Public domain W3C validator