Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjpreima Structured version   Visualization version   Unicode version

Theorem disjpreima 29397
Description: A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
disjpreima  |-  ( ( Fun  F  /\ Disj  x  e.  A  B )  -> Disj  x  e.  A  ( `' F " B ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem disjpreima
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inpreima 6342 . . . . . . . . 9  |-  ( Fun 
F  ->  ( `' F " ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B ) )  =  ( ( `' F "
[_ y  /  x ]_ B )  i^i  ( `' F " [_ z  /  x ]_ B ) ) )
2 imaeq2 5462 . . . . . . . . . 10  |-  ( (
[_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  ->  ( `' F " ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B ) )  =  ( `' F " (/) ) )
3 ima0 5481 . . . . . . . . . 10  |-  ( `' F " (/) )  =  (/)
42, 3syl6eq 2672 . . . . . . . . 9  |-  ( (
[_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  ->  ( `' F " ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B ) )  =  (/) )
51, 4sylan9req 2677 . . . . . . . 8  |-  ( ( Fun  F  /\  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  (
( `' F " [_ y  /  x ]_ B )  i^i  ( `' F " [_ z  /  x ]_ B ) )  =  (/) )
65ex 450 . . . . . . 7  |-  ( Fun 
F  ->  ( ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  ->  ( ( `' F " [_ y  /  x ]_ B )  i^i  ( `' F "
[_ z  /  x ]_ B ) )  =  (/) ) )
7 csbima12 5483 . . . . . . . . . 10  |-  [_ y  /  x ]_ ( `' F " B )  =  ( [_ y  /  x ]_ `' F "
[_ y  /  x ]_ B )
8 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
9 csbconstg 3546 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  [_ y  /  x ]_ `' F  =  `' F )
108, 9ax-mp 5 . . . . . . . . . . 11  |-  [_ y  /  x ]_ `' F  =  `' F
1110imaeq1i 5463 . . . . . . . . . 10  |-  ( [_ y  /  x ]_ `' F " [_ y  /  x ]_ B )  =  ( `' F " [_ y  /  x ]_ B )
127, 11eqtri 2644 . . . . . . . . 9  |-  [_ y  /  x ]_ ( `' F " B )  =  ( `' F "
[_ y  /  x ]_ B )
13 csbima12 5483 . . . . . . . . . 10  |-  [_ z  /  x ]_ ( `' F " B )  =  ( [_ z  /  x ]_ `' F "
[_ z  /  x ]_ B )
14 vex 3203 . . . . . . . . . . . 12  |-  z  e. 
_V
15 csbconstg 3546 . . . . . . . . . . . 12  |-  ( z  e.  _V  ->  [_ z  /  x ]_ `' F  =  `' F )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  [_ z  /  x ]_ `' F  =  `' F
1716imaeq1i 5463 . . . . . . . . . 10  |-  ( [_ z  /  x ]_ `' F " [_ z  /  x ]_ B )  =  ( `' F " [_ z  /  x ]_ B )
1813, 17eqtri 2644 . . . . . . . . 9  |-  [_ z  /  x ]_ ( `' F " B )  =  ( `' F "
[_ z  /  x ]_ B )
1912, 18ineq12i 3812 . . . . . . . 8  |-  ( [_ y  /  x ]_ ( `' F " B )  i^i  [_ z  /  x ]_ ( `' F " B ) )  =  ( ( `' F "
[_ y  /  x ]_ B )  i^i  ( `' F " [_ z  /  x ]_ B ) )
2019eqeq1i 2627 . . . . . . 7  |-  ( (
[_ y  /  x ]_ ( `' F " B )  i^i  [_ z  /  x ]_ ( `' F " B ) )  =  (/)  <->  ( ( `' F " [_ y  /  x ]_ B )  i^i  ( `' F "
[_ z  /  x ]_ B ) )  =  (/) )
216, 20syl6ibr 242 . . . . . 6  |-  ( Fun 
F  ->  ( ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  ->  ( [_ y  /  x ]_ ( `' F " B )  i^i  [_ z  /  x ]_ ( `' F " B ) )  =  (/) ) )
2221orim2d 885 . . . . 5  |-  ( Fun 
F  ->  ( (
y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  (
y  =  z  \/  ( [_ y  /  x ]_ ( `' F " B )  i^i  [_ z  /  x ]_ ( `' F " B ) )  =  (/) ) ) )
2322ralimdv 2963 . . . 4  |-  ( Fun 
F  ->  ( A. z  e.  A  (
y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ ( `' F " B )  i^i  [_ z  /  x ]_ ( `' F " B ) )  =  (/) ) ) )
2423ralimdv 2963 . . 3  |-  ( Fun 
F  ->  ( A. y  e.  A  A. z  e.  A  (
y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ ( `' F " B )  i^i  [_ z  /  x ]_ ( `' F " B ) )  =  (/) ) ) )
25 disjors 4635 . . 3  |-  (Disj  x  e.  A  B  <->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
26 disjors 4635 . . 3  |-  (Disj  x  e.  A  ( `' F " B )  <->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ ( `' F " B )  i^i  [_ z  /  x ]_ ( `' F " B ) )  =  (/) ) )
2724, 25, 263imtr4g 285 . 2  |-  ( Fun 
F  ->  (Disj  x  e.  A  B  -> Disj  x  e.  A  ( `' F " B ) ) )
2827imp 445 1  |-  ( ( Fun  F  /\ Disj  x  e.  A  B )  -> Disj  x  e.  A  ( `' F " B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [_csb 3533    i^i cin 3573   (/)c0 3915  Disj wdisj 4620   `'ccnv 5113   "cima 5117   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-disj 4621  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890
This theorem is referenced by:  sibfof  30402  dstrvprob  30533
  Copyright terms: Public domain W3C validator