Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfof Structured version   Visualization version   GIF version

Theorem sibfof 30402
Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sibfof.c 𝐶 = (Base‘𝐾)
sibfof.0 (𝜑𝑊 ∈ TopSp)
sibfof.1 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
sibfof.2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sibfof.3 (𝜑𝐾 ∈ TopSp)
sibfof.4 (𝜑𝐽 ∈ Fre)
sibfof.5 (𝜑 → ( 0 + 0 ) = (0g𝐾))
Assertion
Ref Expression
sibfof (𝜑 → (𝐹𝑓 + 𝐺) ∈ dom (𝐾sitg𝑀))

Proof of Theorem sibfof
Dummy variables 𝑥 𝑦 𝑧 𝑝 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sibfof.1 . . . . . . . 8 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
2 sibfof.0 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
3 sitgval.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
4 sitgval.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑊)
53, 4tpsuni 20740 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
62, 5syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
76sqxpeqd 5141 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ( 𝐽 × 𝐽))
87feq2d 6031 . . . . . . . 8 (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐶+ :( 𝐽 × 𝐽)⟶𝐶))
91, 8mpbid 222 . . . . . . 7 (𝜑+ :( 𝐽 × 𝐽)⟶𝐶)
109fovrnda 6805 . . . . . 6 ((𝜑 ∧ (𝑧 𝐽𝑥 𝐽)) → (𝑧 + 𝑥) ∈ 𝐶)
11 sitgval.s . . . . . . 7 𝑆 = (sigaGen‘𝐽)
12 sitgval.0 . . . . . . 7 0 = (0g𝑊)
13 sitgval.x . . . . . . 7 · = ( ·𝑠𝑊)
14 sitgval.h . . . . . . 7 𝐻 = (ℝHom‘(Scalar‘𝑊))
15 sitgval.1 . . . . . . 7 (𝜑𝑊𝑉)
16 sitgval.2 . . . . . . 7 (𝜑𝑀 ran measures)
17 sibfmbl.1 . . . . . . 7 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
183, 4, 11, 12, 13, 14, 15, 16, 17sibff 30398 . . . . . 6 (𝜑𝐹: dom 𝑀 𝐽)
19 sibfof.2 . . . . . . 7 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
203, 4, 11, 12, 13, 14, 15, 16, 19sibff 30398 . . . . . 6 (𝜑𝐺: dom 𝑀 𝐽)
21 dmexg 7097 . . . . . . 7 (𝑀 ran measures → dom 𝑀 ∈ V)
22 uniexg 6955 . . . . . . 7 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
2316, 21, 223syl 18 . . . . . 6 (𝜑 dom 𝑀 ∈ V)
24 inidm 3822 . . . . . 6 ( dom 𝑀 dom 𝑀) = dom 𝑀
2510, 18, 20, 23, 23, 24off 6912 . . . . 5 (𝜑 → (𝐹𝑓 + 𝐺): dom 𝑀𝐶)
26 sibfof.3 . . . . . . . 8 (𝜑𝐾 ∈ TopSp)
27 sibfof.c . . . . . . . . 9 𝐶 = (Base‘𝐾)
28 eqid 2622 . . . . . . . . 9 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2927, 28tpsuni 20740 . . . . . . . 8 (𝐾 ∈ TopSp → 𝐶 = (TopOpen‘𝐾))
3026, 29syl 17 . . . . . . 7 (𝜑𝐶 = (TopOpen‘𝐾))
31 fvex 6201 . . . . . . . 8 (TopOpen‘𝐾) ∈ V
32 unisg 30206 . . . . . . . 8 ((TopOpen‘𝐾) ∈ V → (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾))
3331, 32ax-mp 5 . . . . . . 7 (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾)
3430, 33syl6eqr 2674 . . . . . 6 (𝜑𝐶 = (sigaGen‘(TopOpen‘𝐾)))
3534feq3d 6032 . . . . 5 (𝜑 → ((𝐹𝑓 + 𝐺): dom 𝑀𝐶 ↔ (𝐹𝑓 + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
3625, 35mpbid 222 . . . 4 (𝜑 → (𝐹𝑓 + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾)))
3731a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘𝐾) ∈ V)
3837sgsiga 30205 . . . . . 6 (𝜑 → (sigaGen‘(TopOpen‘𝐾)) ∈ ran sigAlgebra)
39 uniexg 6955 . . . . . 6 ((sigaGen‘(TopOpen‘𝐾)) ∈ ran sigAlgebra → (sigaGen‘(TopOpen‘𝐾)) ∈ V)
4038, 39syl 17 . . . . 5 (𝜑 (sigaGen‘(TopOpen‘𝐾)) ∈ V)
4140, 23elmapd 7871 . . . 4 (𝜑 → ((𝐹𝑓 + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑𝑚 dom 𝑀) ↔ (𝐹𝑓 + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
4236, 41mpbird 247 . . 3 (𝜑 → (𝐹𝑓 + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑𝑚 dom 𝑀))
43 inundif 4046 . . . . . . 7 ((𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ∪ (𝑏 ∖ ran (𝐹𝑓 + 𝐺))) = 𝑏
4443imaeq2i 5464 . . . . . 6 ((𝐹𝑓 + 𝐺) “ ((𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ∪ (𝑏 ∖ ran (𝐹𝑓 + 𝐺)))) = ((𝐹𝑓 + 𝐺) “ 𝑏)
45 ffun 6048 . . . . . . . 8 ((𝐹𝑓 + 𝐺): dom 𝑀𝐶 → Fun (𝐹𝑓 + 𝐺))
46 unpreima 6341 . . . . . . . 8 (Fun (𝐹𝑓 + 𝐺) → ((𝐹𝑓 + 𝐺) “ ((𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ∪ (𝑏 ∖ ran (𝐹𝑓 + 𝐺)))) = (((𝐹𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))) ∪ ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺)))))
4725, 45, 463syl 18 . . . . . . 7 (𝜑 → ((𝐹𝑓 + 𝐺) “ ((𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ∪ (𝑏 ∖ ran (𝐹𝑓 + 𝐺)))) = (((𝐹𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))) ∪ ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺)))))
4847adantr 481 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹𝑓 + 𝐺) “ ((𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ∪ (𝑏 ∖ ran (𝐹𝑓 + 𝐺)))) = (((𝐹𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))) ∪ ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺)))))
4944, 48syl5eqr 2670 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹𝑓 + 𝐺) “ 𝑏) = (((𝐹𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))) ∪ ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺)))))
50 dmmeas 30264 . . . . . . . 8 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
5116, 50syl 17 . . . . . . 7 (𝜑 → dom 𝑀 ran sigAlgebra)
5251adantr 481 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → dom 𝑀 ran sigAlgebra)
53 imaiun 6503 . . . . . . . 8 ((𝐹𝑓 + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺)){𝑧}) = 𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))((𝐹𝑓 + 𝐺) “ {𝑧})
54 iunid 4575 . . . . . . . . 9 𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺)){𝑧} = (𝑏 ∩ ran (𝐹𝑓 + 𝐺))
5554imaeq2i 5464 . . . . . . . 8 ((𝐹𝑓 + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺)){𝑧}) = ((𝐹𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹𝑓 + 𝐺)))
5653, 55eqtr3i 2646 . . . . . . 7 𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))((𝐹𝑓 + 𝐺) “ {𝑧}) = ((𝐹𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹𝑓 + 𝐺)))
57 inss2 3834 . . . . . . . . . 10 (𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ⊆ ran (𝐹𝑓 + 𝐺)
586feq3d 6032 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹: dom 𝑀𝐵𝐹: dom 𝑀 𝐽))
5918, 58mpbird 247 . . . . . . . . . . . . . 14 (𝜑𝐹: dom 𝑀𝐵)
606feq3d 6032 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6120, 60mpbird 247 . . . . . . . . . . . . . 14 (𝜑𝐺: dom 𝑀𝐵)
62 ffn 6045 . . . . . . . . . . . . . . 15 ( + :(𝐵 × 𝐵)⟶𝐶+ Fn (𝐵 × 𝐵))
631, 62syl 17 . . . . . . . . . . . . . 14 (𝜑+ Fn (𝐵 × 𝐵))
6459, 61, 23, 63ofpreima2 29466 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝑓 + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6564adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) → ((𝐹𝑓 + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6651adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) → dom 𝑀 ran sigAlgebra)
6751ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → dom 𝑀 ran sigAlgebra)
68 simpll 790 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
69 inss1 3833 . . . . . . . . . . . . . . . . . 18 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧})
70 cnvimass 5485 . . . . . . . . . . . . . . . . . . . 20 ( + “ {𝑧}) ⊆ dom +
71 fdm 6051 . . . . . . . . . . . . . . . . . . . . 21 ( + :(𝐵 × 𝐵)⟶𝐶 → dom + = (𝐵 × 𝐵))
721, 71syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom + = (𝐵 × 𝐵))
7370, 72syl5sseq 3653 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7473adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7569, 74syl5ss 3614 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (𝐵 × 𝐵))
7675sselda 3603 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
7751adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → dom 𝑀 ran sigAlgebra)
78 sibfof.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ Fre)
7978sgsiga 30205 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
8011, 79syl5eqel 2705 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ran sigAlgebra)
8180adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝑆 ran sigAlgebra)
823, 4, 11, 12, 13, 14, 15, 16, 17sibfmbl 30397 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
8382adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐹 ∈ (dom 𝑀MblFnM𝑆))
844tpstop 20741 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ TopSp → 𝐽 ∈ Top)
85 cldssbrsiga 30250 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
862, 84, 853syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8786adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8878adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐽 ∈ Fre)
89 xp1st 7198 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (1st𝑝) ∈ 𝐵)
9089adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐵)
916adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐵 = 𝐽)
9290, 91eleqtrd 2703 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐽)
93 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21 𝐽 = 𝐽
9493t1sncld 21130 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (1st𝑝) ∈ 𝐽) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9588, 92, 94syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9687, 95sseldd 3604 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (sigaGen‘𝐽))
9796, 11syl6eleqr 2712 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ 𝑆)
9877, 81, 83, 97mbfmcnvima 30319 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
9968, 76, 98syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
1003, 4, 11, 12, 13, 14, 15, 16, 19sibfmbl 30397 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ (dom 𝑀MblFnM𝑆))
101100adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐺 ∈ (dom 𝑀MblFnM𝑆))
102 xp2nd 7199 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (2nd𝑝) ∈ 𝐵)
103102adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐵)
104103, 91eleqtrd 2703 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐽)
10593t1sncld 21130 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (2nd𝑝) ∈ 𝐽) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10688, 104, 105syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10787, 106sseldd 3604 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (sigaGen‘𝐽))
108107, 11syl6eleqr 2712 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ 𝑆)
10977, 81, 101, 108mbfmcnvima 30319 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
11068, 76, 109syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
111 inelsiga 30198 . . . . . . . . . . . . . . 15 ((dom 𝑀 ran sigAlgebra ∧ (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀 ∧ (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
11267, 99, 110, 111syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
113112ralrimiva 2966 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
1143, 4, 11, 12, 13, 14, 15, 16, 17sibfrn 30399 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ∈ Fin)
1153, 4, 11, 12, 13, 14, 15, 16, 19sibfrn 30399 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐺 ∈ Fin)
116 xpfi 8231 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
117114, 115, 116syl2anc 693 . . . . . . . . . . . . . . . 16 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
118 inss2 3834 . . . . . . . . . . . . . . . 16 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)
119 ssdomg 8001 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺)))
120117, 118, 119mpisyl 21 . . . . . . . . . . . . . . 15 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺))
121 isfinite 8549 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 × ran 𝐺) ∈ Fin ↔ (ran 𝐹 × ran 𝐺) ≺ ω)
122121biimpi 206 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → (ran 𝐹 × ran 𝐺) ≺ ω)
123 sdomdom 7983 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ≺ ω → (ran 𝐹 × ran 𝐺) ≼ ω)
124117, 122, 1233syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ran 𝐹 × ran 𝐺) ≼ ω)
125 domtr 8009 . . . . . . . . . . . . . . 15 (((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺) ∧ (ran 𝐹 × ran 𝐺) ≼ ω) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
126120, 124, 125syl2anc 693 . . . . . . . . . . . . . 14 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
127126adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
128 nfcv 2764 . . . . . . . . . . . . . 14 𝑝(( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))
129128sigaclcuni 30181 . . . . . . . . . . . . 13 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
13066, 113, 127, 129syl3anc 1326 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
13165, 130eqeltrd 2701 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ran (𝐹𝑓 + 𝐺)) → ((𝐹𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀)
132131ralrimiva 2966 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ran (𝐹𝑓 + 𝐺)((𝐹𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀)
133 ssralv 3666 . . . . . . . . . 10 ((𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ⊆ ran (𝐹𝑓 + 𝐺) → (∀𝑧 ∈ ran (𝐹𝑓 + 𝐺)((𝐹𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))((𝐹𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀))
13457, 132, 133mpsyl 68 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))((𝐹𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀)
135134adantr 481 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))((𝐹𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀)
136 ffun 6048 . . . . . . . . . . . . . 14 ( + :(𝐵 × 𝐵)⟶𝐶 → Fun + )
1371, 136syl 17 . . . . . . . . . . . . 13 (𝜑 → Fun + )
138 imafi 8259 . . . . . . . . . . . . 13 ((Fun + ∧ (ran 𝐹 × ran 𝐺) ∈ Fin) → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
139137, 117, 138syl2anc 693 . . . . . . . . . . . 12 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
14018, 20, 9, 23ofrn2 29442 . . . . . . . . . . . 12 (𝜑 → ran (𝐹𝑓 + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))
141 ssfi 8180 . . . . . . . . . . . 12 ((( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin ∧ ran (𝐹𝑓 + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) → ran (𝐹𝑓 + 𝐺) ∈ Fin)
142139, 140, 141syl2anc 693 . . . . . . . . . . 11 (𝜑 → ran (𝐹𝑓 + 𝐺) ∈ Fin)
143 ssdomg 8001 . . . . . . . . . . 11 (ran (𝐹𝑓 + 𝐺) ∈ Fin → ((𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ⊆ ran (𝐹𝑓 + 𝐺) → (𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ≼ ran (𝐹𝑓 + 𝐺)))
144142, 57, 143mpisyl 21 . . . . . . . . . 10 (𝜑 → (𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ≼ ran (𝐹𝑓 + 𝐺))
145 isfinite 8549 . . . . . . . . . . . 12 (ran (𝐹𝑓 + 𝐺) ∈ Fin ↔ ran (𝐹𝑓 + 𝐺) ≺ ω)
146142, 145sylib 208 . . . . . . . . . . 11 (𝜑 → ran (𝐹𝑓 + 𝐺) ≺ ω)
147 sdomdom 7983 . . . . . . . . . . 11 (ran (𝐹𝑓 + 𝐺) ≺ ω → ran (𝐹𝑓 + 𝐺) ≼ ω)
148146, 147syl 17 . . . . . . . . . 10 (𝜑 → ran (𝐹𝑓 + 𝐺) ≼ ω)
149 domtr 8009 . . . . . . . . . 10 (((𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ≼ ran (𝐹𝑓 + 𝐺) ∧ ran (𝐹𝑓 + 𝐺) ≼ ω) → (𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ≼ ω)
150144, 148, 149syl2anc 693 . . . . . . . . 9 (𝜑 → (𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ≼ ω)
151150adantr 481 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ≼ ω)
152 nfcv 2764 . . . . . . . . 9 𝑧(𝑏 ∩ ran (𝐹𝑓 + 𝐺))
153152sigaclcuni 30181 . . . . . . . 8 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))((𝐹𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀 ∧ (𝑏 ∩ ran (𝐹𝑓 + 𝐺)) ≼ ω) → 𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))((𝐹𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀)
15452, 135, 151, 153syl3anc 1326 . . . . . . 7 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → 𝑧 ∈ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))((𝐹𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀)
15556, 154syl5eqelr 2706 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))) ∈ dom 𝑀)
156 difpreima 6343 . . . . . . . . . 10 (Fun (𝐹𝑓 + 𝐺) → ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺))) = (((𝐹𝑓 + 𝐺) “ 𝑏) ∖ ((𝐹𝑓 + 𝐺) “ ran (𝐹𝑓 + 𝐺))))
15725, 45, 1563syl 18 . . . . . . . . 9 (𝜑 → ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺))) = (((𝐹𝑓 + 𝐺) “ 𝑏) ∖ ((𝐹𝑓 + 𝐺) “ ran (𝐹𝑓 + 𝐺))))
158 cnvimarndm 5486 . . . . . . . . . . 11 ((𝐹𝑓 + 𝐺) “ ran (𝐹𝑓 + 𝐺)) = dom (𝐹𝑓 + 𝐺)
159158difeq2i 3725 . . . . . . . . . 10 (((𝐹𝑓 + 𝐺) “ 𝑏) ∖ ((𝐹𝑓 + 𝐺) “ ran (𝐹𝑓 + 𝐺))) = (((𝐹𝑓 + 𝐺) “ 𝑏) ∖ dom (𝐹𝑓 + 𝐺))
160 cnvimass 5485 . . . . . . . . . . 11 ((𝐹𝑓 + 𝐺) “ 𝑏) ⊆ dom (𝐹𝑓 + 𝐺)
161 ssdif0 3942 . . . . . . . . . . 11 (((𝐹𝑓 + 𝐺) “ 𝑏) ⊆ dom (𝐹𝑓 + 𝐺) ↔ (((𝐹𝑓 + 𝐺) “ 𝑏) ∖ dom (𝐹𝑓 + 𝐺)) = ∅)
162160, 161mpbi 220 . . . . . . . . . 10 (((𝐹𝑓 + 𝐺) “ 𝑏) ∖ dom (𝐹𝑓 + 𝐺)) = ∅
163159, 162eqtri 2644 . . . . . . . . 9 (((𝐹𝑓 + 𝐺) “ 𝑏) ∖ ((𝐹𝑓 + 𝐺) “ ran (𝐹𝑓 + 𝐺))) = ∅
164157, 163syl6eq 2672 . . . . . . . 8 (𝜑 → ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺))) = ∅)
165 0elsiga 30177 . . . . . . . . 9 (dom 𝑀 ran sigAlgebra → ∅ ∈ dom 𝑀)
16616, 50, 1653syl 18 . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑀)
167164, 166eqeltrd 2701 . . . . . . 7 (𝜑 → ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺))) ∈ dom 𝑀)
168167adantr 481 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺))) ∈ dom 𝑀)
169 unelsiga 30197 . . . . . 6 ((dom 𝑀 ran sigAlgebra ∧ ((𝐹𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))) ∈ dom 𝑀 ∧ ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺))) ∈ dom 𝑀) → (((𝐹𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))) ∪ ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺)))) ∈ dom 𝑀)
17052, 155, 168, 169syl3anc 1326 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (((𝐹𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹𝑓 + 𝐺))) ∪ ((𝐹𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹𝑓 + 𝐺)))) ∈ dom 𝑀)
17149, 170eqeltrd 2701 . . . 4 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹𝑓 + 𝐺) “ 𝑏) ∈ dom 𝑀)
172171ralrimiva 2966 . . 3 (𝜑 → ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹𝑓 + 𝐺) “ 𝑏) ∈ dom 𝑀)
17351, 38ismbfm 30314 . . 3 (𝜑 → ((𝐹𝑓 + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ↔ ((𝐹𝑓 + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑𝑚 dom 𝑀) ∧ ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹𝑓 + 𝐺) “ 𝑏) ∈ dom 𝑀)))
17442, 172, 173mpbir2and 957 . 2 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))))
17564adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → ((𝐹𝑓 + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
176175fveq2d 6195 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹𝑓 + 𝐺) “ {𝑧})) = (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
177 measbasedom 30265 . . . . . . . . 9 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
17816, 177sylib 208 . . . . . . . 8 (𝜑𝑀 ∈ (measures‘dom 𝑀))
179178adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → 𝑀 ∈ (measures‘dom 𝑀))
180 eldifi 3732 . . . . . . . 8 (𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)}) → 𝑧 ∈ ran (𝐹𝑓 + 𝐺))
181180, 113sylan2 491 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
182126adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
183 sneq 4187 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → {𝑥} = {(1st𝑝)})
184183imaeq2d 5466 . . . . . . . . . 10 (𝑥 = (1st𝑝) → (𝐹 “ {𝑥}) = (𝐹 “ {(1st𝑝)}))
185 sneq 4187 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → {𝑦} = {(2nd𝑝)})
186185imaeq2d 5466 . . . . . . . . . 10 (𝑦 = (2nd𝑝) → (𝐺 “ {𝑦}) = (𝐺 “ {(2nd𝑝)}))
187 ffun 6048 . . . . . . . . . . . 12 (𝐹: dom 𝑀 𝐽 → Fun 𝐹)
18818, 187syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
189 sndisj 4644 . . . . . . . . . . 11 Disj 𝑥 ∈ ran 𝐹{𝑥}
190 disjpreima 29397 . . . . . . . . . . 11 ((Fun 𝐹Disj 𝑥 ∈ ran 𝐹{𝑥}) → Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
191188, 189, 190sylancl 694 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
192 ffun 6048 . . . . . . . . . . . 12 (𝐺: dom 𝑀 𝐽 → Fun 𝐺)
19320, 192syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐺)
194 sndisj 4644 . . . . . . . . . . 11 Disj 𝑦 ∈ ran 𝐺{𝑦}
195 disjpreima 29397 . . . . . . . . . . 11 ((Fun 𝐺Disj 𝑦 ∈ ran 𝐺{𝑦}) → Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
196193, 194, 195sylancl 694 . . . . . . . . . 10 (𝜑Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
197184, 186, 191, 196disjxpin 29401 . . . . . . . . 9 (𝜑Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
198 disjss1 4626 . . . . . . . . 9 ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
199118, 197, 198mpsyl 68 . . . . . . . 8 (𝜑Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
200199adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
201 measvuni 30277 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω ∧ Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
202179, 181, 182, 200, 201syl112anc 1330 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
203 ssfi 8180 . . . . . . . . 9 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
204117, 118, 203sylancl 694 . . . . . . . 8 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
205204adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
206 simpll 790 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
207 simpr 477 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)))
208118, 207sseldi 3601 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (ran 𝐹 × ran 𝐺))
209 xp1st 7198 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st𝑝) ∈ ran 𝐹)
210208, 209syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ ran 𝐹)
211 xp2nd 7199 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd𝑝) ∈ ran 𝐺)
212208, 211syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ ran 𝐺)
213 oveq12 6659 . . . . . . . . . . . . . . . 16 ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = ( 0 + 0 ))
214 sibfof.5 . . . . . . . . . . . . . . . 16 (𝜑 → ( 0 + 0 ) = (0g𝐾))
215213, 214sylan9eqr 2678 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 = 0𝑦 = 0 )) → (𝑥 + 𝑦) = (0g𝐾))
216215ex 450 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = (0g𝐾)))
217216necon3ad 2807 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → ¬ (𝑥 = 0𝑦 = 0 )))
218 neorian 2888 . . . . . . . . . . . . 13 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
219217, 218syl6ibr 242 . . . . . . . . . . . 12 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
220219adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
221220ralrimivva 2971 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
222206, 221syl 17 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
22369a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧}))
224223sselda 3603 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ ( + “ {𝑧}))
225 fniniseg 6338 . . . . . . . . . . . . 13 ( + Fn (𝐵 × 𝐵) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
226206, 63, 2253syl 18 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
227224, 226mpbid 222 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧))
228 simpr 477 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = 𝑧)
229 1st2nd2 7205 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝐵 × 𝐵) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
230229fveq2d 6195 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩))
231 df-ov 6653 . . . . . . . . . . . . . 14 ((1st𝑝) + (2nd𝑝)) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩)
232230, 231syl6eqr 2674 . . . . . . . . . . . . 13 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
233232adantr 481 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
234228, 233eqtr3d 2658 . . . . . . . . . . 11 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
235227, 234syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
236 simplr 792 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)}))
237236eldifbd 3587 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ¬ 𝑧 ∈ {(0g𝐾)})
238 velsn 4193 . . . . . . . . . . . 12 (𝑧 ∈ {(0g𝐾)} ↔ 𝑧 = (0g𝐾))
239238necon3bbii 2841 . . . . . . . . . . 11 𝑧 ∈ {(0g𝐾)} ↔ 𝑧 ≠ (0g𝐾))
240237, 239sylib 208 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ≠ (0g𝐾))
241235, 240eqnetrrd 2862 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾))
242180, 76sylanl2 683 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
243242, 89syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ 𝐵)
244242, 102syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ 𝐵)
245 oveq1 6657 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥 + 𝑦) = ((1st𝑝) + 𝑦))
246245neeq1d 2853 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥 + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + 𝑦) ≠ (0g𝐾)))
247 neeq1 2856 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥0 ↔ (1st𝑝) ≠ 0 ))
248247orbi1d 739 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥0𝑦0 ) ↔ ((1st𝑝) ≠ 0𝑦0 )))
249246, 248imbi12d 334 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → (((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) ↔ (((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 ))))
250 oveq2 6658 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → ((1st𝑝) + 𝑦) = ((1st𝑝) + (2nd𝑝)))
251250neeq1d 2853 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾)))
252 neeq1 2856 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → (𝑦0 ↔ (2nd𝑝) ≠ 0 ))
253252orbi2d 738 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) ≠ 0𝑦0 ) ↔ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )))
254251, 253imbi12d 334 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → ((((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 )) ↔ (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
255249, 254rspc2v 3322 . . . . . . . . . 10 (((1st𝑝) ∈ 𝐵 ∧ (2nd𝑝) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
256243, 244, 255syl2anc 693 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
257222, 241, 256mp2d 49 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
2583, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 78sibfinima 30401 . . . . . . . 8 (((𝜑 ∧ (1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ∧ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
259206, 210, 212, 257, 258syl31anc 1329 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
260205, 259esumpfinval 30137 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
261176, 202, 2603eqtrd 2660 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹𝑓 + 𝐺) “ {𝑧})) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
262 rge0ssre 12280 . . . . . . 7 (0[,)+∞) ⊆ ℝ
263262, 259sseldi 3601 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
264205, 263fsumrecl 14465 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
265261, 264eqeltrd 2701 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹𝑓 + 𝐺) “ {𝑧})) ∈ ℝ)
266179adantr 481 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑀 ∈ (measures‘dom 𝑀))
267180, 112sylanl2 683 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
268 measge0 30270 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
269266, 267, 268syl2anc 693 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
270205, 263, 269fsumge0 14527 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
271270, 261breqtrrd 4681 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ (𝑀‘((𝐹𝑓 + 𝐺) “ {𝑧})))
272 elrege0 12278 . . . 4 ((𝑀‘((𝐹𝑓 + 𝐺) “ {𝑧})) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹𝑓 + 𝐺) “ {𝑧})) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹𝑓 + 𝐺) “ {𝑧}))))
273265, 271, 272sylanbrc 698 . . 3 ((𝜑𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹𝑓 + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
274273ralrimiva 2966 . 2 (𝜑 → ∀𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹𝑓 + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
275 eqid 2622 . . 3 (sigaGen‘(TopOpen‘𝐾)) = (sigaGen‘(TopOpen‘𝐾))
276 eqid 2622 . . 3 (0g𝐾) = (0g𝐾)
277 eqid 2622 . . 3 ( ·𝑠𝐾) = ( ·𝑠𝐾)
278 eqid 2622 . . 3 (ℝHom‘(Scalar‘𝐾)) = (ℝHom‘(Scalar‘𝐾))
27927, 28, 275, 276, 277, 278, 26, 16issibf 30395 . 2 (𝜑 → ((𝐹𝑓 + 𝐺) ∈ dom (𝐾sitg𝑀) ↔ ((𝐹𝑓 + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ∧ ran (𝐹𝑓 + 𝐺) ∈ Fin ∧ ∀𝑧 ∈ (ran (𝐹𝑓 + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹𝑓 + 𝐺) “ {𝑧})) ∈ (0[,)+∞))))
280174, 142, 274, 279mpbir3and 1245 1 (𝜑 → (𝐹𝑓 + 𝐺) ∈ dom (𝐾sitg𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183   cuni 4436   ciun 4520  Disj wdisj 4620   class class class wbr 4653   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  ωcom 7065  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  cdom 7953  csdm 7954  Fincfn 7955  cr 9935  0cc0 9936  +∞cpnf 10071  cle 10075  [,)cico 12177  Σcsu 14416  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  TopOpenctopn 16082  0gc0g 16100  Topctop 20698  TopSpctps 20736  Clsdccld 20820  Frect1 21111  ℝHomcrrh 30037  Σ*cesum 30089  sigAlgebracsiga 30170  sigaGencsigagen 30201  measurescmeas 30258  MblFnMcmbfm 30312  sitgcsitg 30391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-esum 30090  df-siga 30171  df-sigagen 30202  df-meas 30259  df-mbfm 30313  df-sitg 30392
This theorem is referenced by:  sitmcl  30413
  Copyright terms: Public domain W3C validator