| Step | Hyp | Ref
| Expression |
| 1 | | xpsc 16217 |
. . . 4
⊢ ◡({𝐴} +𝑐 {𝐵}) = (({∅} × {𝐴}) ∪ ({1𝑜} ×
{𝐵})) |
| 2 | 1 | fveq1i 6192 |
. . 3
⊢ (◡({𝐴} +𝑐 {𝐵})‘∅) = ((({∅} ×
{𝐴}) ∪
({1𝑜} × {𝐵}))‘∅) |
| 3 | | fnconstg 6093 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ({∅} × {𝐴}) Fn
{∅}) |
| 4 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
| 5 | | fvi 6255 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ V → ( I
‘𝑥) = 𝑥) |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ( I
‘𝑥) = 𝑥 |
| 7 | | elsni 4194 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) |
| 8 | 7 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝐵} → ( I ‘𝑥) = ( I ‘𝐵)) |
| 9 | 6, 8 | syl5eqr 2670 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝐵} → 𝑥 = ( I ‘𝐵)) |
| 10 | | velsn 4193 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {( I ‘𝐵)} ↔ 𝑥 = ( I ‘𝐵)) |
| 11 | 9, 10 | sylibr 224 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝐵} → 𝑥 ∈ {( I ‘𝐵)}) |
| 12 | 11 | ssriv 3607 |
. . . . . . . . 9
⊢ {𝐵} ⊆ {( I ‘𝐵)} |
| 13 | | xpss2 5229 |
. . . . . . . . 9
⊢ ({𝐵} ⊆ {( I ‘𝐵)} →
({1𝑜} × {𝐵}) ⊆ ({1𝑜} ×
{( I ‘𝐵)})) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
⊢
({1𝑜} × {𝐵}) ⊆ ({1𝑜} ×
{( I ‘𝐵)}) |
| 15 | | 1on 7567 |
. . . . . . . . . 10
⊢
1𝑜 ∈ On |
| 16 | 15 | elexi 3213 |
. . . . . . . . 9
⊢
1𝑜 ∈ V |
| 17 | | fvex 6201 |
. . . . . . . . 9
⊢ ( I
‘𝐵) ∈
V |
| 18 | 16, 17 | xpsn 6407 |
. . . . . . . 8
⊢
({1𝑜} × {( I ‘𝐵)}) = {〈1𝑜, ( I
‘𝐵)〉} |
| 19 | 14, 18 | sseqtri 3637 |
. . . . . . 7
⊢
({1𝑜} × {𝐵}) ⊆ {〈1𝑜, ( I
‘𝐵)〉} |
| 20 | 16, 17 | funsn 5939 |
. . . . . . 7
⊢ Fun
{〈1𝑜, ( I ‘𝐵)〉} |
| 21 | | funss 5907 |
. . . . . . 7
⊢
(({1𝑜} × {𝐵}) ⊆ {〈1𝑜, ( I
‘𝐵)〉} →
(Fun {〈1𝑜, ( I ‘𝐵)〉} → Fun ({1𝑜}
× {𝐵}))) |
| 22 | 19, 20, 21 | mp2 9 |
. . . . . 6
⊢ Fun
({1𝑜} × {𝐵}) |
| 23 | | funfn 5918 |
. . . . . 6
⊢ (Fun
({1𝑜} × {𝐵}) ↔ ({1𝑜} ×
{𝐵}) Fn dom
({1𝑜} × {𝐵})) |
| 24 | 22, 23 | mpbi 220 |
. . . . 5
⊢
({1𝑜} × {𝐵}) Fn dom ({1𝑜} ×
{𝐵}) |
| 25 | 24 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ({1𝑜} ×
{𝐵}) Fn dom
({1𝑜} × {𝐵})) |
| 26 | | dmxpss 5565 |
. . . . . . 7
⊢ dom
({1𝑜} × {𝐵}) ⊆
{1𝑜} |
| 27 | | sslin 3839 |
. . . . . . 7
⊢ (dom
({1𝑜} × {𝐵}) ⊆ {1𝑜} →
({∅} ∩ dom ({1𝑜} × {𝐵})) ⊆ ({∅} ∩
{1𝑜})) |
| 28 | 26, 27 | ax-mp 5 |
. . . . . 6
⊢
({∅} ∩ dom ({1𝑜} × {𝐵})) ⊆ ({∅} ∩
{1𝑜}) |
| 29 | | 1n0 7575 |
. . . . . . . 8
⊢
1𝑜 ≠ ∅ |
| 30 | 29 | necomi 2848 |
. . . . . . 7
⊢ ∅
≠ 1𝑜 |
| 31 | | disjsn2 4247 |
. . . . . . 7
⊢ (∅
≠ 1𝑜 → ({∅} ∩ {1𝑜}) =
∅) |
| 32 | 30, 31 | ax-mp 5 |
. . . . . 6
⊢
({∅} ∩ {1𝑜}) = ∅ |
| 33 | | sseq0 3975 |
. . . . . 6
⊢
((({∅} ∩ dom ({1𝑜} × {𝐵})) ⊆ ({∅} ∩
{1𝑜}) ∧ ({∅} ∩ {1𝑜}) =
∅) → ({∅} ∩ dom ({1𝑜} × {𝐵})) = ∅) |
| 34 | 28, 32, 33 | mp2an 708 |
. . . . 5
⊢
({∅} ∩ dom ({1𝑜} × {𝐵})) = ∅ |
| 35 | 34 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ({∅} ∩ dom
({1𝑜} × {𝐵})) = ∅) |
| 36 | | 0ex 4790 |
. . . . . 6
⊢ ∅
∈ V |
| 37 | 36 | snid 4208 |
. . . . 5
⊢ ∅
∈ {∅} |
| 38 | 37 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∅ ∈
{∅}) |
| 39 | | fvun1 6269 |
. . . 4
⊢
((({∅} × {𝐴}) Fn {∅} ∧
({1𝑜} × {𝐵}) Fn dom ({1𝑜} ×
{𝐵}) ∧ (({∅}
∩ dom ({1𝑜} × {𝐵})) = ∅ ∧ ∅ ∈
{∅})) → ((({∅} × {𝐴}) ∪ ({1𝑜} ×
{𝐵}))‘∅) =
(({∅} × {𝐴})‘∅)) |
| 40 | 3, 25, 35, 38, 39 | syl112anc 1330 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((({∅} × {𝐴}) ∪
({1𝑜} × {𝐵}))‘∅) = (({∅} ×
{𝐴})‘∅)) |
| 41 | 2, 40 | syl5eq 2668 |
. 2
⊢ (𝐴 ∈ 𝑉 → (◡({𝐴} +𝑐 {𝐵})‘∅) = (({∅} ×
{𝐴})‘∅)) |
| 42 | | xpsng 6406 |
. . . . 5
⊢ ((∅
∈ V ∧ 𝐴 ∈
𝑉) → ({∅}
× {𝐴}) =
{〈∅, 𝐴〉}) |
| 43 | 42 | fveq1d 6193 |
. . . 4
⊢ ((∅
∈ V ∧ 𝐴 ∈
𝑉) → (({∅}
× {𝐴})‘∅)
= ({〈∅, 𝐴〉}‘∅)) |
| 44 | | fvsng 6447 |
. . . 4
⊢ ((∅
∈ V ∧ 𝐴 ∈
𝑉) → ({〈∅,
𝐴〉}‘∅) =
𝐴) |
| 45 | 43, 44 | eqtrd 2656 |
. . 3
⊢ ((∅
∈ V ∧ 𝐴 ∈
𝑉) → (({∅}
× {𝐴})‘∅)
= 𝐴) |
| 46 | 36, 45 | mpan 706 |
. 2
⊢ (𝐴 ∈ 𝑉 → (({∅} × {𝐴})‘∅) = 𝐴) |
| 47 | 41, 46 | eqtrd 2656 |
1
⊢ (𝐴 ∈ 𝑉 → (◡({𝐴} +𝑐 {𝐵})‘∅) = 𝐴) |