Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf2 Structured version   Visualization version   GIF version

Theorem elhf2 32282
Description: Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015.)
Hypothesis
Ref Expression
elhf2.1 𝐴 ∈ V
Assertion
Ref Expression
elhf2 (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)

Proof of Theorem elhf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elhf 32281 . 2 (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2 omon 7076 . . 3 (ω ∈ On ∨ ω = On)
3 nnon 7071 . . . . . . . . 9 (𝑥 ∈ ω → 𝑥 ∈ On)
4 elhf2.1 . . . . . . . . . 10 𝐴 ∈ V
54rankr1a 8699 . . . . . . . . 9 (𝑥 ∈ On → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
63, 5syl 17 . . . . . . . 8 (𝑥 ∈ ω → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
76adantl 482 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
8 elnn 7075 . . . . . . . . 9 (((rank‘𝐴) ∈ 𝑥𝑥 ∈ ω) → (rank‘𝐴) ∈ ω)
98expcom 451 . . . . . . . 8 (𝑥 ∈ ω → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω))
109adantl 482 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ ω) → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω))
117, 10sylbid 230 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ∈ (𝑅1𝑥) → (rank‘𝐴) ∈ ω))
1211rexlimdva 3031 . . . . 5 (ω ∈ On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) → (rank‘𝐴) ∈ ω))
13 peano2 7086 . . . . . . . 8 ((rank‘𝐴) ∈ ω → suc (rank‘𝐴) ∈ ω)
1413adantr 481 . . . . . . 7 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → suc (rank‘𝐴) ∈ ω)
15 r1rankid 8722 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
164, 15mp1i 13 . . . . . . . . 9 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
174elpw 4164 . . . . . . . . 9 (𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
1816, 17sylibr 224 . . . . . . . 8 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
19 nnon 7071 . . . . . . . . . 10 ((rank‘𝐴) ∈ ω → (rank‘𝐴) ∈ On)
20 r1suc 8633 . . . . . . . . . 10 ((rank‘𝐴) ∈ On → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2119, 20syl 17 . . . . . . . . 9 ((rank‘𝐴) ∈ ω → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2221adantr 481 . . . . . . . 8 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2318, 22eleqtrrd 2704 . . . . . . 7 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
24 fveq2 6191 . . . . . . . . 9 (𝑥 = suc (rank‘𝐴) → (𝑅1𝑥) = (𝑅1‘suc (rank‘𝐴)))
2524eleq2d 2687 . . . . . . . 8 (𝑥 = suc (rank‘𝐴) → (𝐴 ∈ (𝑅1𝑥) ↔ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
2625rspcev 3309 . . . . . . 7 ((suc (rank‘𝐴) ∈ ω ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2714, 23, 26syl2anc 693 . . . . . 6 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2827expcom 451 . . . . 5 (ω ∈ On → ((rank‘𝐴) ∈ ω → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥)))
2912, 28impbid 202 . . . 4 (ω ∈ On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
304tz9.13 8654 . . . . . 6 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
31 rankon 8658 . . . . . 6 (rank‘𝐴) ∈ On
3230, 312th 254 . . . . 5 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ On)
33 rexeq 3139 . . . . . 6 (ω = On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)))
34 eleq2 2690 . . . . . 6 (ω = On → ((rank‘𝐴) ∈ ω ↔ (rank‘𝐴) ∈ On))
3533, 34bibi12d 335 . . . . 5 (ω = On → ((∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω) ↔ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ On)))
3632, 35mpbiri 248 . . . 4 (ω = On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
3729, 36jaoi 394 . . 3 ((ω ∈ On ∨ ω = On) → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
382, 37ax-mp 5 . 2 (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω)
391, 38bitri 264 1 (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  wss 3574  𝒫 cpw 4158  Oncon0 5723  suc csuc 5725  cfv 5888  ωcom 7065  𝑅1cr1 8625  rankcrnk 8626   Hf chf 32279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-r1 8627  df-rank 8628  df-hf 32280
This theorem is referenced by:  elhf2g  32283  hfsn  32286
  Copyright terms: Public domain W3C validator