| Step | Hyp | Ref
| Expression |
| 1 | | elhf 32281 |
. 2
⊢ (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈
(𝑅1‘𝑥)) |
| 2 | | omon 7076 |
. . 3
⊢ (ω
∈ On ∨ ω = On) |
| 3 | | nnon 7071 |
. . . . . . . . 9
⊢ (𝑥 ∈ ω → 𝑥 ∈ On) |
| 4 | | elhf2.1 |
. . . . . . . . . 10
⊢ 𝐴 ∈ V |
| 5 | 4 | rankr1a 8699 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → (𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ 𝑥)) |
| 6 | 3, 5 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ω → (𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ 𝑥)) |
| 7 | 6 | adantl 482 |
. . . . . . 7
⊢ ((ω
∈ On ∧ 𝑥 ∈
ω) → (𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ 𝑥)) |
| 8 | | elnn 7075 |
. . . . . . . . 9
⊢
(((rank‘𝐴)
∈ 𝑥 ∧ 𝑥 ∈ ω) →
(rank‘𝐴) ∈
ω) |
| 9 | 8 | expcom 451 |
. . . . . . . 8
⊢ (𝑥 ∈ ω →
((rank‘𝐴) ∈
𝑥 → (rank‘𝐴) ∈
ω)) |
| 10 | 9 | adantl 482 |
. . . . . . 7
⊢ ((ω
∈ On ∧ 𝑥 ∈
ω) → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω)) |
| 11 | 7, 10 | sylbid 230 |
. . . . . 6
⊢ ((ω
∈ On ∧ 𝑥 ∈
ω) → (𝐴 ∈
(𝑅1‘𝑥) → (rank‘𝐴) ∈ ω)) |
| 12 | 11 | rexlimdva 3031 |
. . . . 5
⊢ (ω
∈ On → (∃𝑥
∈ ω 𝐴 ∈
(𝑅1‘𝑥) → (rank‘𝐴) ∈ ω)) |
| 13 | | peano2 7086 |
. . . . . . . 8
⊢
((rank‘𝐴)
∈ ω → suc (rank‘𝐴) ∈ ω) |
| 14 | 13 | adantr 481 |
. . . . . . 7
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → suc (rank‘𝐴) ∈
ω) |
| 15 | | r1rankid 8722 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → 𝐴 ⊆
(𝑅1‘(rank‘𝐴))) |
| 16 | 4, 15 | mp1i 13 |
. . . . . . . . 9
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → 𝐴 ⊆
(𝑅1‘(rank‘𝐴))) |
| 17 | 4 | elpw 4164 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝒫
(𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆
(𝑅1‘(rank‘𝐴))) |
| 18 | 16, 17 | sylibr 224 |
. . . . . . . 8
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → 𝐴 ∈ 𝒫
(𝑅1‘(rank‘𝐴))) |
| 19 | | nnon 7071 |
. . . . . . . . . 10
⊢
((rank‘𝐴)
∈ ω → (rank‘𝐴) ∈ On) |
| 20 | | r1suc 8633 |
. . . . . . . . . 10
⊢
((rank‘𝐴)
∈ On → (𝑅1‘suc (rank‘𝐴)) = 𝒫
(𝑅1‘(rank‘𝐴))) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢
((rank‘𝐴)
∈ ω → (𝑅1‘suc (rank‘𝐴)) = 𝒫
(𝑅1‘(rank‘𝐴))) |
| 22 | 21 | adantr 481 |
. . . . . . . 8
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → (𝑅1‘suc
(rank‘𝐴)) = 𝒫
(𝑅1‘(rank‘𝐴))) |
| 23 | 18, 22 | eleqtrrd 2704 |
. . . . . . 7
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → 𝐴 ∈ (𝑅1‘suc
(rank‘𝐴))) |
| 24 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑥 = suc (rank‘𝐴) →
(𝑅1‘𝑥) = (𝑅1‘suc
(rank‘𝐴))) |
| 25 | 24 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝑥 = suc (rank‘𝐴) → (𝐴 ∈ (𝑅1‘𝑥) ↔ 𝐴 ∈ (𝑅1‘suc
(rank‘𝐴)))) |
| 26 | 25 | rspcev 3309 |
. . . . . . 7
⊢ ((suc
(rank‘𝐴) ∈
ω ∧ 𝐴 ∈
(𝑅1‘suc (rank‘𝐴))) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥)) |
| 27 | 14, 23, 26 | syl2anc 693 |
. . . . . 6
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥)) |
| 28 | 27 | expcom 451 |
. . . . 5
⊢ (ω
∈ On → ((rank‘𝐴) ∈ ω → ∃𝑥 ∈ ω 𝐴 ∈
(𝑅1‘𝑥))) |
| 29 | 12, 28 | impbid 202 |
. . . 4
⊢ (ω
∈ On → (∃𝑥
∈ ω 𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ ω)) |
| 30 | 4 | tz9.13 8654 |
. . . . . 6
⊢
∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘𝑥) |
| 31 | | rankon 8658 |
. . . . . 6
⊢
(rank‘𝐴)
∈ On |
| 32 | 30, 31 | 2th 254 |
. . . . 5
⊢
(∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ On) |
| 33 | | rexeq 3139 |
. . . . . 6
⊢ (ω
= On → (∃𝑥
∈ ω 𝐴 ∈
(𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥))) |
| 34 | | eleq2 2690 |
. . . . . 6
⊢ (ω
= On → ((rank‘𝐴)
∈ ω ↔ (rank‘𝐴) ∈ On)) |
| 35 | 33, 34 | bibi12d 335 |
. . . . 5
⊢ (ω
= On → ((∃𝑥
∈ ω 𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ ω) ↔ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ On))) |
| 36 | 32, 35 | mpbiri 248 |
. . . 4
⊢ (ω
= On → (∃𝑥
∈ ω 𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ ω)) |
| 37 | 29, 36 | jaoi 394 |
. . 3
⊢ ((ω
∈ On ∨ ω = On) → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥) ↔ (rank‘𝐴) ∈
ω)) |
| 38 | 2, 37 | ax-mp 5 |
. 2
⊢
(∃𝑥 ∈
ω 𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ ω) |
| 39 | 1, 38 | bitri 264 |
1
⊢ (𝐴 ∈ Hf ↔
(rank‘𝐴) ∈
ω) |