Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf2 Structured version   Visualization version   Unicode version

Theorem elhf2 32282
Description: Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015.)
Hypothesis
Ref Expression
elhf2.1  |-  A  e. 
_V
Assertion
Ref Expression
elhf2  |-  ( A  e. Hf 
<->  ( rank `  A
)  e.  om )

Proof of Theorem elhf2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elhf 32281 . 2  |-  ( A  e. Hf 
<->  E. x  e.  om  A  e.  ( R1 `  x ) )
2 omon 7076 . . 3  |-  ( om  e.  On  \/  om  =  On )
3 nnon 7071 . . . . . . . . 9  |-  ( x  e.  om  ->  x  e.  On )
4 elhf2.1 . . . . . . . . . 10  |-  A  e. 
_V
54rankr1a 8699 . . . . . . . . 9  |-  ( x  e.  On  ->  ( A  e.  ( R1 `  x )  <->  ( rank `  A )  e.  x
) )
63, 5syl 17 . . . . . . . 8  |-  ( x  e.  om  ->  ( A  e.  ( R1 `  x )  <->  ( rank `  A )  e.  x
) )
76adantl 482 . . . . . . 7  |-  ( ( om  e.  On  /\  x  e.  om )  ->  ( A  e.  ( R1 `  x )  <-> 
( rank `  A )  e.  x ) )
8 elnn 7075 . . . . . . . . 9  |-  ( ( ( rank `  A
)  e.  x  /\  x  e.  om )  ->  ( rank `  A
)  e.  om )
98expcom 451 . . . . . . . 8  |-  ( x  e.  om  ->  (
( rank `  A )  e.  x  ->  ( rank `  A )  e.  om ) )
109adantl 482 . . . . . . 7  |-  ( ( om  e.  On  /\  x  e.  om )  ->  ( ( rank `  A
)  e.  x  -> 
( rank `  A )  e.  om ) )
117, 10sylbid 230 . . . . . 6  |-  ( ( om  e.  On  /\  x  e.  om )  ->  ( A  e.  ( R1 `  x )  ->  ( rank `  A
)  e.  om )
)
1211rexlimdva 3031 . . . . 5  |-  ( om  e.  On  ->  ( E. x  e.  om  A  e.  ( R1 `  x )  ->  ( rank `  A )  e. 
om ) )
13 peano2 7086 . . . . . . . 8  |-  ( (
rank `  A )  e.  om  ->  suc  ( rank `  A )  e.  om )
1413adantr 481 . . . . . . 7  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  ->  suc  ( rank `  A
)  e.  om )
15 r1rankid 8722 . . . . . . . . . 10  |-  ( A  e.  _V  ->  A  C_  ( R1 `  ( rank `  A ) ) )
164, 15mp1i 13 . . . . . . . . 9  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  ->  A  C_  ( R1 `  ( rank `  A )
) )
174elpw 4164 . . . . . . . . 9  |-  ( A  e.  ~P ( R1
`  ( rank `  A
) )  <->  A  C_  ( R1 `  ( rank `  A
) ) )
1816, 17sylibr 224 . . . . . . . 8  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  ->  A  e.  ~P ( R1 `  ( rank `  A
) ) )
19 nnon 7071 . . . . . . . . . 10  |-  ( (
rank `  A )  e.  om  ->  ( rank `  A )  e.  On )
20 r1suc 8633 . . . . . . . . . 10  |-  ( (
rank `  A )  e.  On  ->  ( R1 ` 
suc  ( rank `  A
) )  =  ~P ( R1 `  ( rank `  A ) ) )
2119, 20syl 17 . . . . . . . . 9  |-  ( (
rank `  A )  e.  om  ->  ( R1 ` 
suc  ( rank `  A
) )  =  ~P ( R1 `  ( rank `  A ) ) )
2221adantr 481 . . . . . . . 8  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  -> 
( R1 `  suc  ( rank `  A )
)  =  ~P ( R1 `  ( rank `  A
) ) )
2318, 22eleqtrrd 2704 . . . . . . 7  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  ->  A  e.  ( R1 ` 
suc  ( rank `  A
) ) )
24 fveq2 6191 . . . . . . . . 9  |-  ( x  =  suc  ( rank `  A )  ->  ( R1 `  x )  =  ( R1 `  suc  ( rank `  A )
) )
2524eleq2d 2687 . . . . . . . 8  |-  ( x  =  suc  ( rank `  A )  ->  ( A  e.  ( R1 `  x )  <->  A  e.  ( R1 `  suc  ( rank `  A ) ) ) )
2625rspcev 3309 . . . . . . 7  |-  ( ( suc  ( rank `  A
)  e.  om  /\  A  e.  ( R1 ` 
suc  ( rank `  A
) ) )  ->  E. x  e.  om  A  e.  ( R1 `  x ) )
2714, 23, 26syl2anc 693 . . . . . 6  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  ->  E. x  e.  om  A  e.  ( R1 `  x ) )
2827expcom 451 . . . . 5  |-  ( om  e.  On  ->  (
( rank `  A )  e.  om  ->  E. x  e.  om  A  e.  ( R1 `  x ) ) )
2912, 28impbid 202 . . . 4  |-  ( om  e.  On  ->  ( E. x  e.  om  A  e.  ( R1 `  x )  <->  ( rank `  A )  e.  om ) )
304tz9.13 8654 . . . . . 6  |-  E. x  e.  On  A  e.  ( R1 `  x )
31 rankon 8658 . . . . . 6  |-  ( rank `  A )  e.  On
3230, 312th 254 . . . . 5  |-  ( E. x  e.  On  A  e.  ( R1 `  x
)  <->  ( rank `  A
)  e.  On )
33 rexeq 3139 . . . . . 6  |-  ( om  =  On  ->  ( E. x  e.  om  A  e.  ( R1 `  x )  <->  E. x  e.  On  A  e.  ( R1 `  x ) ) )
34 eleq2 2690 . . . . . 6  |-  ( om  =  On  ->  (
( rank `  A )  e.  om  <->  ( rank `  A
)  e.  On ) )
3533, 34bibi12d 335 . . . . 5  |-  ( om  =  On  ->  (
( E. x  e. 
om  A  e.  ( R1 `  x )  <-> 
( rank `  A )  e.  om )  <->  ( E. x  e.  On  A  e.  ( R1 `  x
)  <->  ( rank `  A
)  e.  On ) ) )
3632, 35mpbiri 248 . . . 4  |-  ( om  =  On  ->  ( E. x  e.  om  A  e.  ( R1 `  x )  <->  ( rank `  A )  e.  om ) )
3729, 36jaoi 394 . . 3  |-  ( ( om  e.  On  \/  om  =  On )  -> 
( E. x  e. 
om  A  e.  ( R1 `  x )  <-> 
( rank `  A )  e.  om ) )
382, 37ax-mp 5 . 2  |-  ( E. x  e.  om  A  e.  ( R1 `  x
)  <->  ( rank `  A
)  e.  om )
391, 38bitri 264 1  |-  ( A  e. Hf 
<->  ( rank `  A
)  e.  om )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   Oncon0 5723   suc csuc 5725   ` cfv 5888   omcom 7065   R1cr1 8625   rankcrnk 8626   Hf chf 32279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-r1 8627  df-rank 8628  df-hf 32280
This theorem is referenced by:  elhf2g  32283  hfsn  32286
  Copyright terms: Public domain W3C validator