Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicc3 Structured version   Visualization version   GIF version

Theorem elicc3 32311
Description: An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
elicc3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))

Proof of Theorem elicc3
StepHypRef Expression
1 elicc1 12219 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp1 1061 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ*)
32a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ*))
4 xrletr 11989 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐶𝐶𝐵) → 𝐴𝐵))
54exp5o 1286 . . . . . 6 (𝐴 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐶 → (𝐶𝐵𝐴𝐵)))))
65com23 86 . . . . 5 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐴𝐶 → (𝐶𝐵𝐴𝐵)))))
76imp5q 32306 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐴𝐵))
8 df-ne 2795 . . . . . . . . . 10 (𝐶𝐴 ↔ ¬ 𝐶 = 𝐴)
9 xrleltne 11978 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (𝐴 < 𝐶𝐶𝐴))
109biimprd 238 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (𝐶𝐴𝐴 < 𝐶))
118, 10syl5bir 233 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
12113adant3r3 1276 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
1312adantlr 751 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
14 eqcom 2629 . . . . . . . . . . . . . 14 (𝐶 = 𝐵𝐵 = 𝐶)
1514necon3bbii 2841 . . . . . . . . . . . . 13 𝐶 = 𝐵𝐵𝐶)
16 xrleltne 11978 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (𝐶 < 𝐵𝐵𝐶))
1716biimprd 238 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (𝐵𝐶𝐶 < 𝐵))
1815, 17syl5bi 232 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
19183exp 1264 . . . . . . . . . . 11 (𝐶 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐶𝐵 → (¬ 𝐶 = 𝐵𝐶 < 𝐵))))
2019com12 32 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐶𝐵 → (¬ 𝐶 = 𝐵𝐶 < 𝐵))))
2120imp32 449 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
22213adantr2 1221 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
2322adantll 750 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
2413, 23anim12d 586 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)))
2524ex 450 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵))))
26 df-or 385 . . . . . 6 ((𝐶 = 𝐴 ∨ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
27 3orass 1040 . . . . . 6 ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) ↔ (𝐶 = 𝐴 ∨ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
28 pm5.6 951 . . . . . . 7 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵))))
29 orcom 402 . . . . . . . 8 ((𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵)) ↔ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))
3029imbi2i 326 . . . . . . 7 ((¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵))) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
3128, 30bitri 264 . . . . . 6 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
3226, 27, 313bitr4ri 293 . . . . 5 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))
3325, 32syl6ib 241 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
343, 7, 333jcad 1243 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
35 simp1 1061 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ ℝ*)
3635a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ ℝ*))
37 xrleid 11983 . . . . . . . . 9 (𝐴 ∈ ℝ*𝐴𝐴)
3837ad3antrrr 766 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐴)
39 breq2 4657 . . . . . . . 8 (𝐶 = 𝐴 → (𝐴𝐶𝐴𝐴))
4038, 39syl5ibrcom 237 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐴𝐴𝐶))
41 xrltle 11982 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶𝐴𝐶))
4241adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 < 𝐶𝐴𝐶))
4342adantllr 755 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 < 𝐶𝐴𝐶))
4443adantrd 484 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐴𝐶))
45 simpr 477 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐵)
46 breq2 4657 . . . . . . . 8 (𝐶 = 𝐵 → (𝐴𝐶𝐴𝐵))
4745, 46syl5ibrcom 237 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐵𝐴𝐶))
4840, 44, 473jaod 1392 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴𝐶))
4948exp31 630 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ℝ* → (𝐴𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴𝐶))))
50493impd 1281 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐴𝐶))
51 breq1 4656 . . . . . . . 8 (𝐶 = 𝐴 → (𝐶𝐵𝐴𝐵))
5245, 51syl5ibrcom 237 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐴𝐶𝐵))
53 xrltle 11982 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐵𝐶𝐵))
5453ancoms 469 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐵𝐶𝐵))
5554adantld 483 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
5655adantll 750 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
5756adantr 481 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
58 xrleid 11983 . . . . . . . . 9 (𝐵 ∈ ℝ*𝐵𝐵)
5958ad3antlr 767 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵𝐵)
60 breq1 4656 . . . . . . . 8 (𝐶 = 𝐵 → (𝐶𝐵𝐵𝐵))
6159, 60syl5ibrcom 237 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐵𝐶𝐵))
6252, 57, 613jaod 1392 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶𝐵))
6362exp31 630 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ℝ* → (𝐴𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶𝐵))))
64633impd 1281 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶𝐵))
6536, 50, 643jcad 1243 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
6634, 65impbid 202 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
671, 66bitrd 268 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  (class class class)co 6650  *cxr 10073   < clt 10074  cle 10075  [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-icc 12182
This theorem is referenced by:  ivthALT  32330
  Copyright terms: Public domain W3C validator