MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg2b Structured version   Visualization version   GIF version

Theorem eltg2b 20763
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2b (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦

Proof of Theorem eltg2b
StepHypRef Expression
1 eltg2 20762 . 2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
2 simpl 473 . . . . . . 7 ((𝑥𝑦𝑦𝐴) → 𝑥𝑦)
32reximi 3011 . . . . . 6 (∃𝑦𝐵 (𝑥𝑦𝑦𝐴) → ∃𝑦𝐵 𝑥𝑦)
4 eluni2 4440 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑦𝐵 𝑥𝑦)
53, 4sylibr 224 . . . . 5 (∃𝑦𝐵 (𝑥𝑦𝑦𝐴) → 𝑥 𝐵)
65ralimi 2952 . . . 4 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴) → ∀𝑥𝐴 𝑥 𝐵)
7 dfss3 3592 . . . 4 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
86, 7sylibr 224 . . 3 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴) → 𝐴 𝐵)
98pm4.71ri 665 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
101, 9syl6bbr 278 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  wral 2912  wrex 2913  wss 3574   cuni 4436  cfv 5888  topGenctg 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104
This theorem is referenced by:  tg2  20769  tgcl  20773  eltop2  20779  tgss2  20791  basgen2  20793  2ndc1stc  21254  eltx  21371  tgqioo  22603  isfne2  32337
  Copyright terms: Public domain W3C validator