![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltg2b | Structured version Visualization version GIF version |
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
eltg2b | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltg2 20762 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | |
2 | simpl 473 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) → 𝑥 ∈ 𝑦) | |
3 | 2 | reximi 3011 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) |
4 | eluni2 4440 | . . . . . 6 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) | |
5 | 3, 4 | sylibr 224 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) → 𝑥 ∈ ∪ 𝐵) |
6 | 5 | ralimi 2952 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) → ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵) |
7 | dfss3 3592 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵) | |
8 | 6, 7 | sylibr 224 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) → 𝐴 ⊆ ∪ 𝐵) |
9 | 8 | pm4.71ri 665 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
10 | 1, 9 | syl6bbr 278 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 ∪ cuni 4436 ‘cfv 5888 topGenctg 16098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 |
This theorem is referenced by: tg2 20769 tgcl 20773 eltop2 20779 tgss2 20791 basgen2 20793 2ndc1stc 21254 eltx 21371 tgqioo 22603 isfne2 32337 |
Copyright terms: Public domain | W3C validator |