| Step | Hyp | Ref
| Expression |
| 1 | | sylow2a.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 2 | | pwfi 8261 |
. . . . 5
⊢ (𝑌 ∈ Fin ↔ 𝒫
𝑌 ∈
Fin) |
| 3 | 1, 2 | sylib 208 |
. . . 4
⊢ (𝜑 → 𝒫 𝑌 ∈ Fin) |
| 4 | | sylow2a.m |
. . . . . 6
⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
| 5 | | sylow2a.r |
. . . . . . 7
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
| 6 | | sylow2a.x |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
| 7 | 5, 6 | gaorber 17741 |
. . . . . 6
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ∼ Er 𝑌) |
| 8 | 4, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → ∼ Er 𝑌) |
| 9 | 8 | qsss 7808 |
. . . 4
⊢ (𝜑 → (𝑌 / ∼ ) ⊆ 𝒫
𝑌) |
| 10 | | ssfi 8180 |
. . . 4
⊢
((𝒫 𝑌 ∈
Fin ∧ (𝑌 / ∼ )
⊆ 𝒫 𝑌) →
(𝑌 / ∼ )
∈ Fin) |
| 11 | 3, 9, 10 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝑌 / ∼ ) ∈
Fin) |
| 12 | | diffi 8192 |
. . 3
⊢ ((𝑌 / ∼ ) ∈ Fin →
((𝑌 / ∼ )
∖ 𝒫 𝑍) ∈
Fin) |
| 13 | 11, 12 | syl 17 |
. 2
⊢ (𝜑 → ((𝑌 / ∼ ) ∖ 𝒫
𝑍) ∈
Fin) |
| 14 | | sylow2a.p |
. . . . 5
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
| 15 | | gagrp 17725 |
. . . . . . 7
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
| 16 | 4, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 17 | | sylow2a.f |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 18 | 6 | pgpfi 18020 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(#‘𝑋) = (𝑃↑𝑛)))) |
| 19 | 16, 17, 18 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(#‘𝑋) = (𝑃↑𝑛)))) |
| 20 | 14, 19 | mpbid 222 |
. . . 4
⊢ (𝜑 → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(#‘𝑋) = (𝑃↑𝑛))) |
| 21 | 20 | simpld 475 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 22 | | prmz 15389 |
. . 3
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 23 | 21, 22 | syl 17 |
. 2
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 24 | | eldifi 3732 |
. . . . 5
⊢ (𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍) → 𝑧 ∈ (𝑌 / ∼ )) |
| 25 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑌 ∈ Fin) |
| 26 | 9 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑧 ∈ 𝒫 𝑌) |
| 27 | 26 | elpwid 4170 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑧 ⊆ 𝑌) |
| 28 | | ssfi 8180 |
. . . . . 6
⊢ ((𝑌 ∈ Fin ∧ 𝑧 ⊆ 𝑌) → 𝑧 ∈ Fin) |
| 29 | 25, 27, 28 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑧 ∈ Fin) |
| 30 | 24, 29 | sylan2 491 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) → 𝑧 ∈ Fin) |
| 31 | | hashcl 13147 |
. . . 4
⊢ (𝑧 ∈ Fin →
(#‘𝑧) ∈
ℕ0) |
| 32 | 30, 31 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) → (#‘𝑧) ∈
ℕ0) |
| 33 | 32 | nn0zd 11480 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) → (#‘𝑧) ∈
ℤ) |
| 34 | | eldif 3584 |
. . 3
⊢ (𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍) ↔ (𝑧 ∈ (𝑌 / ∼ ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍)) |
| 35 | | eqid 2622 |
. . . . 5
⊢ (𝑌 / ∼ ) = (𝑌 / ∼ ) |
| 36 | | sseq1 3626 |
. . . . . . . 8
⊢ ([𝑤] ∼ = 𝑧 → ([𝑤] ∼ ⊆ 𝑍 ↔ 𝑧 ⊆ 𝑍)) |
| 37 | | selpw 4165 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝒫 𝑍 ↔ 𝑧 ⊆ 𝑍) |
| 38 | 36, 37 | syl6bbr 278 |
. . . . . . 7
⊢ ([𝑤] ∼ = 𝑧 → ([𝑤] ∼ ⊆ 𝑍 ↔ 𝑧 ∈ 𝒫 𝑍)) |
| 39 | 38 | notbid 308 |
. . . . . 6
⊢ ([𝑤] ∼ = 𝑧 → (¬ [𝑤] ∼ ⊆ 𝑍 ↔ ¬ 𝑧 ∈ 𝒫 𝑍)) |
| 40 | | fveq2 6191 |
. . . . . . 7
⊢ ([𝑤] ∼ = 𝑧 → (#‘[𝑤] ∼ ) = (#‘𝑧)) |
| 41 | 40 | breq2d 4665 |
. . . . . 6
⊢ ([𝑤] ∼ = 𝑧 → (𝑃 ∥ (#‘[𝑤] ∼ ) ↔ 𝑃 ∥ (#‘𝑧))) |
| 42 | 39, 41 | imbi12d 334 |
. . . . 5
⊢ ([𝑤] ∼ = 𝑧 → ((¬ [𝑤] ∼ ⊆ 𝑍 → 𝑃 ∥ (#‘[𝑤] ∼ )) ↔ (¬
𝑧 ∈ 𝒫 𝑍 → 𝑃 ∥ (#‘𝑧)))) |
| 43 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑃 ∈ ℙ) |
| 44 | 8 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ∼ Er 𝑌) |
| 45 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ 𝑌) |
| 46 | 44, 45 | erref 7762 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑤 ∼ 𝑤) |
| 47 | | vex 3203 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
| 48 | 47, 47 | elec 7786 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ [𝑤] ∼ ↔ 𝑤 ∼ 𝑤) |
| 49 | 46, 48 | sylibr 224 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ [𝑤] ∼ ) |
| 50 | | ne0i 3921 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ [𝑤] ∼ → [𝑤] ∼ ≠
∅) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → [𝑤] ∼ ≠
∅) |
| 52 | 8 | ecss 7788 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → [𝑤] ∼ ⊆ 𝑌) |
| 53 | | ssfi 8180 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ∈ Fin ∧ [𝑤] ∼ ⊆ 𝑌) → [𝑤] ∼ ∈
Fin) |
| 54 | 1, 52, 53 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → [𝑤] ∼ ∈
Fin) |
| 55 | 54 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → [𝑤] ∼ ∈
Fin) |
| 56 | | hashnncl 13157 |
. . . . . . . . . . . 12
⊢ ([𝑤] ∼ ∈ Fin →
((#‘[𝑤] ∼ )
∈ ℕ ↔ [𝑤]
∼
≠ ∅)) |
| 57 | 55, 56 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((#‘[𝑤] ∼ ) ∈ ℕ
↔ [𝑤] ∼ ≠
∅)) |
| 58 | 51, 57 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (#‘[𝑤] ∼ ) ∈
ℕ) |
| 59 | | pceq0 15575 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧
(#‘[𝑤] ∼ )
∈ ℕ) → ((𝑃
pCnt (#‘[𝑤] ∼ )) = 0
↔ ¬ 𝑃 ∥
(#‘[𝑤] ∼
))) |
| 60 | 43, 58, 59 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃 pCnt (#‘[𝑤] ∼ )) = 0 ↔ ¬
𝑃 ∥ (#‘[𝑤] ∼
))) |
| 61 | | oveq2 6658 |
. . . . . . . . . 10
⊢ ((𝑃 pCnt (#‘[𝑤] ∼ )) = 0 →
(𝑃↑(𝑃 pCnt (#‘[𝑤] ∼ ))) = (𝑃↑0)) |
| 62 | | hashcl 13147 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ([𝑤] ∼ ∈ Fin →
(#‘[𝑤] ∼ )
∈ ℕ0) |
| 63 | 54, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (#‘[𝑤] ∼ ) ∈
ℕ0) |
| 64 | 63 | nn0zd 11480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (#‘[𝑤] ∼ ) ∈
ℤ) |
| 65 | | ssrab2 3687 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ⊆ 𝑋 |
| 66 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑋 ∈ Fin ∧ {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ⊆ 𝑋) → {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ∈ Fin) |
| 67 | 17, 65, 66 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ∈ Fin) |
| 68 | | hashcl 13147 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ∈ Fin → (#‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈
ℕ0) |
| 69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (#‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈
ℕ0) |
| 70 | 69 | nn0zd 11480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (#‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈ ℤ) |
| 71 | | dvdsmul1 15003 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((#‘[𝑤] ∼ )
∈ ℤ ∧ (#‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈ ℤ) → (#‘[𝑤] ∼ ) ∥
((#‘[𝑤] ∼ )
· (#‘{𝑣 ∈
𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
| 72 | 64, 70, 71 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (#‘[𝑤] ∼ ) ∥
((#‘[𝑤] ∼ )
· (#‘{𝑣 ∈
𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
| 73 | 72 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (#‘[𝑤] ∼ ) ∥
((#‘[𝑤] ∼ )
· (#‘{𝑣 ∈
𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
| 74 | 4 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
| 75 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑋 ∈ Fin) |
| 76 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} = {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} |
| 77 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺 ~QG {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) = (𝐺 ~QG {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) |
| 78 | 6, 76, 77, 5 | orbsta2 17747 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑤 ∈ 𝑌) ∧ 𝑋 ∈ Fin) → (#‘𝑋) = ((#‘[𝑤] ∼ ) ·
(#‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
| 79 | 74, 45, 75, 78 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (#‘𝑋) = ((#‘[𝑤] ∼ ) ·
(#‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
| 80 | 73, 79 | breqtrrd 4681 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (#‘[𝑤] ∼ ) ∥
(#‘𝑋)) |
| 81 | 20 | simprd 479 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃↑𝑛)) |
| 82 | 81 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃↑𝑛)) |
| 83 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝑋) =
(𝑃↑𝑛) → ((#‘[𝑤] ∼ ) ∥
(#‘𝑋) ↔
(#‘[𝑤] ∼ )
∥ (𝑃↑𝑛))) |
| 84 | 83 | biimpcd 239 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘[𝑤] ∼ )
∥ (#‘𝑋) →
((#‘𝑋) = (𝑃↑𝑛) → (#‘[𝑤] ∼ ) ∥ (𝑃↑𝑛))) |
| 85 | 84 | reximdv 3016 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘[𝑤] ∼ )
∥ (#‘𝑋) →
(∃𝑛 ∈
ℕ0 (#‘𝑋) = (𝑃↑𝑛) → ∃𝑛 ∈ ℕ0 (#‘[𝑤] ∼ ) ∥ (𝑃↑𝑛))) |
| 86 | 80, 82, 85 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ∃𝑛 ∈ ℕ0 (#‘[𝑤] ∼ ) ∥ (𝑃↑𝑛)) |
| 87 | | pcprmpw2 15586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℙ ∧
(#‘[𝑤] ∼ )
∈ ℕ) → (∃𝑛 ∈ ℕ0 (#‘[𝑤] ∼ ) ∥ (𝑃↑𝑛) ↔ (#‘[𝑤] ∼ ) = (𝑃↑(𝑃 pCnt (#‘[𝑤] ∼
))))) |
| 88 | 43, 58, 87 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (∃𝑛 ∈ ℕ0 (#‘[𝑤] ∼ ) ∥ (𝑃↑𝑛) ↔ (#‘[𝑤] ∼ ) = (𝑃↑(𝑃 pCnt (#‘[𝑤] ∼
))))) |
| 89 | 86, 88 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (#‘[𝑤] ∼ ) = (𝑃↑(𝑃 pCnt (#‘[𝑤] ∼
)))) |
| 90 | 89 | eqcomd 2628 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑃↑(𝑃 pCnt (#‘[𝑤] ∼ ))) =
(#‘[𝑤] ∼
)) |
| 91 | 23 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑃 ∈ ℤ) |
| 92 | 91 | zcnd 11483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑃 ∈ ℂ) |
| 93 | 92 | exp0d 13002 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑃↑0) = 1) |
| 94 | | hash1 13192 |
. . . . . . . . . . . . . . 15
⊢
(#‘1𝑜) = 1 |
| 95 | 93, 94 | syl6eqr 2674 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑃↑0) =
(#‘1𝑜)) |
| 96 | 90, 95 | eqeq12d 2637 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (#‘[𝑤] ∼ ))) = (𝑃↑0) ↔ (#‘[𝑤] ∼ ) =
(#‘1𝑜))) |
| 97 | | df1o2 7572 |
. . . . . . . . . . . . . . 15
⊢
1𝑜 = {∅} |
| 98 | | snfi 8038 |
. . . . . . . . . . . . . . 15
⊢ {∅}
∈ Fin |
| 99 | 97, 98 | eqeltri 2697 |
. . . . . . . . . . . . . 14
⊢
1𝑜 ∈ Fin |
| 100 | | hashen 13135 |
. . . . . . . . . . . . . 14
⊢ (([𝑤] ∼ ∈ Fin ∧
1𝑜 ∈ Fin) → ((#‘[𝑤] ∼ ) =
(#‘1𝑜) ↔ [𝑤] ∼ ≈
1𝑜)) |
| 101 | 55, 99, 100 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((#‘[𝑤] ∼ ) =
(#‘1𝑜) ↔ [𝑤] ∼ ≈
1𝑜)) |
| 102 | 96, 101 | bitrd 268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (#‘[𝑤] ∼ ))) = (𝑃↑0) ↔ [𝑤] ∼ ≈
1𝑜)) |
| 103 | | en1b 8024 |
. . . . . . . . . . . 12
⊢ ([𝑤] ∼ ≈
1𝑜 ↔ [𝑤] ∼ = {∪ [𝑤]
∼
}) |
| 104 | 102, 103 | syl6bb 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (#‘[𝑤] ∼ ))) = (𝑃↑0) ↔ [𝑤] ∼ = {∪ [𝑤]
∼
})) |
| 105 | 45 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∈ 𝑌) |
| 106 | 4 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
| 107 | 6 | gaf 17728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| 108 | 106, 107 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| 109 | | simprl 794 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ℎ ∈ 𝑋) |
| 110 | 108, 109,
105 | fovrnd 6806 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) ∈ 𝑌) |
| 111 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ ⊕ 𝑤) = (ℎ ⊕ 𝑤) |
| 112 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = ℎ → (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤)) |
| 113 | 112 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → ((𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤) ↔ (ℎ ⊕ 𝑤) = (ℎ ⊕ 𝑤))) |
| 114 | 113 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℎ ∈ 𝑋 ∧ (ℎ ⊕ 𝑤) = (ℎ ⊕ 𝑤)) → ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤)) |
| 115 | 109, 111,
114 | sylancl 694 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ∃𝑘 ∈
𝑋 (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤)) |
| 116 | 5 | gaorb 17740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∼ (ℎ ⊕ 𝑤) ↔ (𝑤 ∈ 𝑌 ∧ (ℎ ⊕ 𝑤) ∈ 𝑌 ∧ ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤))) |
| 117 | 105, 110,
115, 116 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∼ (ℎ ⊕ 𝑤)) |
| 118 | | ovex 6678 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ ⊕ 𝑤) ∈ V |
| 119 | 118, 47 | elec 7786 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ ⊕ 𝑤) ∈ [𝑤] ∼ ↔ 𝑤 ∼ (ℎ ⊕ 𝑤)) |
| 120 | 117, 119 | sylibr 224 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) ∈ [𝑤] ∼ ) |
| 121 | | simprr 796 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → [𝑤] ∼ =
{∪ [𝑤] ∼ }) |
| 122 | 120, 121 | eleqtrd 2703 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) ∈ {∪ [𝑤]
∼
}) |
| 123 | 118 | elsn 4192 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ⊕ 𝑤) ∈ {∪ [𝑤] ∼ } ↔ (ℎ ⊕ 𝑤) = ∪ [𝑤] ∼ ) |
| 124 | 122, 123 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) = ∪
[𝑤] ∼ ) |
| 125 | 49 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∈ [𝑤] ∼ ) |
| 126 | 125, 121 | eleqtrd 2703 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∈ {∪ [𝑤]
∼
}) |
| 127 | 47 | elsn 4192 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ {∪ [𝑤]
∼
} ↔ 𝑤 = ∪ [𝑤]
∼
) |
| 128 | 126, 127 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 = ∪ [𝑤]
∼
) |
| 129 | 124, 128 | eqtr4d 2659 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) = 𝑤) |
| 130 | 129 | expr 643 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ ℎ ∈ 𝑋) → ([𝑤] ∼ = {∪ [𝑤]
∼
} → (ℎ ⊕ 𝑤) = 𝑤)) |
| 131 | 130 | ralrimdva 2969 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ([𝑤] ∼ = {∪ [𝑤]
∼
} → ∀ℎ ∈
𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 132 | 104, 131 | sylbid 230 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (#‘[𝑤] ∼ ))) = (𝑃↑0) → ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 133 | 61, 132 | syl5 34 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃 pCnt (#‘[𝑤] ∼ )) = 0 →
∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 134 | 60, 133 | sylbird 250 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ 𝑃 ∥ (#‘[𝑤] ∼ ) →
∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 135 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑤 → (ℎ ⊕ 𝑢) = (ℎ ⊕ 𝑤)) |
| 136 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑤 → 𝑢 = 𝑤) |
| 137 | 135, 136 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑤 → ((ℎ ⊕ 𝑢) = 𝑢 ↔ (ℎ ⊕ 𝑤) = 𝑤)) |
| 138 | 137 | ralbidv 2986 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑤 → (∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢 ↔ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 139 | | sylow2a.z |
. . . . . . . . . . 11
⊢ 𝑍 = {𝑢 ∈ 𝑌 ∣ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢} |
| 140 | 138, 139 | elrab2 3366 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑍 ↔ (𝑤 ∈ 𝑌 ∧ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 141 | 140 | baib 944 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑌 → (𝑤 ∈ 𝑍 ↔ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 142 | 141 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑤 ∈ 𝑍 ↔ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 143 | 134, 142 | sylibrd 249 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ 𝑃 ∥ (#‘[𝑤] ∼ ) → 𝑤 ∈ 𝑍)) |
| 144 | 6, 4, 14, 17, 1, 139, 5 | sylow2alem1 18032 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → [𝑤] ∼ = {𝑤}) |
| 145 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ 𝑍) |
| 146 | 145 | snssd 4340 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {𝑤} ⊆ 𝑍) |
| 147 | 144, 146 | eqsstrd 3639 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → [𝑤] ∼ ⊆ 𝑍) |
| 148 | 147 | ex 450 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ 𝑍 → [𝑤] ∼ ⊆ 𝑍)) |
| 149 | 148 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑤 ∈ 𝑍 → [𝑤] ∼ ⊆ 𝑍)) |
| 150 | 143, 149 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ 𝑃 ∥ (#‘[𝑤] ∼ ) → [𝑤] ∼ ⊆ 𝑍)) |
| 151 | 150 | con1d 139 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ [𝑤] ∼ ⊆ 𝑍 → 𝑃 ∥ (#‘[𝑤] ∼
))) |
| 152 | 35, 42, 151 | ectocld 7814 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → (¬
𝑧 ∈ 𝒫 𝑍 → 𝑃 ∥ (#‘𝑧))) |
| 153 | 152 | impr 649 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ (𝑌 / ∼ ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍)) → 𝑃 ∥ (#‘𝑧)) |
| 154 | 34, 153 | sylan2b 492 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) → 𝑃 ∥ (#‘𝑧)) |
| 155 | 13, 23, 33, 154 | fsumdvds 15030 |
1
⊢ (𝜑 → 𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)(#‘𝑧)) |