![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > entri | Structured version Visualization version GIF version |
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
entri.1 | ⊢ 𝐴 ≈ 𝐵 |
entri.2 | ⊢ 𝐵 ≈ 𝐶 |
Ref | Expression |
---|---|
entri | ⊢ 𝐴 ≈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | entri.1 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
2 | entri.2 | . 2 ⊢ 𝐵 ≈ 𝐶 | |
3 | entr 8008 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
4 | 1, 2, 3 | mp2an 708 | 1 ⊢ 𝐴 ≈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4653 ≈ cen 7952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-er 7742 df-en 7956 |
This theorem is referenced by: entr2i 8011 entr3i 8012 entr4i 8013 infxpenc2 8845 cfpwsdom 9406 hashxplem 13220 xpnnen 14939 qnnen 14942 rpnnen 14956 rexpen 14957 odhash 17989 cygctb 18293 met2ndci 22327 re2ndc 22604 iscmet3 23091 dyadmbl 23368 opnmblALT 23371 mbfimaopnlem 23422 aannenlem3 24085 mblfinlem1 33446 heiborlem3 33612 heibor 33620 irrapx1 37392 zenom 39219 qenom 39577 |
Copyright terms: Public domain | W3C validator |