MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfimaopnlem Structured version   Visualization version   GIF version

Theorem mbfimaopnlem 23422
Description: Lemma for mbfimaopn 23423. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
mbfimaopn.1 𝐽 = (TopOpen‘ℂfld)
mbfimaopn.2 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
mbfimaopn.3 𝐵 = ((,) “ (ℚ × ℚ))
mbfimaopn.4 𝐾 = ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
mbfimaopnlem ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → (𝐹𝐴) ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem mbfimaopnlem
Dummy variables 𝑡 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfimaopn.2 . . . . . . . 8 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 eqid 2622 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
3 mbfimaopn.1 . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
41, 2, 3cnrehmeo 22752 . . . . . . 7 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽)
5 hmeocn 21563 . . . . . . 7 (𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) → 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽))
64, 5ax-mp 5 . . . . . 6 𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽)
7 cnima 21069 . . . . . 6 ((𝐺 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐴𝐽) → (𝐺𝐴) ∈ ((topGen‘ran (,)) ×t (topGen‘ran (,))))
86, 7mpan 706 . . . . 5 (𝐴𝐽 → (𝐺𝐴) ∈ ((topGen‘ran (,)) ×t (topGen‘ran (,))))
9 mbfimaopn.3 . . . . . . . . 9 𝐵 = ((,) “ (ℚ × ℚ))
109fveq2i 6194 . . . . . . . 8 (topGen‘𝐵) = (topGen‘((,) “ (ℚ × ℚ)))
1110tgqioo 22603 . . . . . . 7 (topGen‘ran (,)) = (topGen‘𝐵)
1211, 11oveq12i 6662 . . . . . 6 ((topGen‘ran (,)) ×t (topGen‘ran (,))) = ((topGen‘𝐵) ×t (topGen‘𝐵))
13 qtopbas 22563 . . . . . . . 8 ((,) “ (ℚ × ℚ)) ∈ TopBases
149, 13eqeltri 2697 . . . . . . 7 𝐵 ∈ TopBases
15 txbasval 21409 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → ((topGen‘𝐵) ×t (topGen‘𝐵)) = (𝐵 ×t 𝐵))
1614, 14, 15mp2an 708 . . . . . 6 ((topGen‘𝐵) ×t (topGen‘𝐵)) = (𝐵 ×t 𝐵)
17 mbfimaopn.4 . . . . . . . 8 𝐾 = ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
1817txval 21367 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → (𝐵 ×t 𝐵) = (topGen‘𝐾))
1914, 14, 18mp2an 708 . . . . . 6 (𝐵 ×t 𝐵) = (topGen‘𝐾)
2012, 16, 193eqtri 2648 . . . . 5 ((topGen‘ran (,)) ×t (topGen‘ran (,))) = (topGen‘𝐾)
218, 20syl6eleq 2711 . . . 4 (𝐴𝐽 → (𝐺𝐴) ∈ (topGen‘𝐾))
2217txbas 21370 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases) → 𝐾 ∈ TopBases)
2314, 14, 22mp2an 708 . . . . 5 𝐾 ∈ TopBases
24 eltg3 20766 . . . . 5 (𝐾 ∈ TopBases → ((𝐺𝐴) ∈ (topGen‘𝐾) ↔ ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)))
2523, 24ax-mp 5 . . . 4 ((𝐺𝐴) ∈ (topGen‘𝐾) ↔ ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
2621, 25sylib 208 . . 3 (𝐴𝐽 → ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
2726adantl 482 . 2 ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → ∃𝑡(𝑡𝐾 ∧ (𝐺𝐴) = 𝑡))
281cnref1o 11827 . . . . . . . 8 𝐺:(ℝ × ℝ)–1-1-onto→ℂ
29 f1ofo 6144 . . . . . . . 8 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)–onto→ℂ)
3028, 29ax-mp 5 . . . . . . 7 𝐺:(ℝ × ℝ)–onto→ℂ
31 elssuni 4467 . . . . . . . . 9 (𝐴𝐽𝐴 𝐽)
323cnfldtopon 22586 . . . . . . . . . 10 𝐽 ∈ (TopOn‘ℂ)
3332toponunii 20721 . . . . . . . . 9 ℂ = 𝐽
3431, 33syl6sseqr 3652 . . . . . . . 8 (𝐴𝐽𝐴 ⊆ ℂ)
3534ad2antlr 763 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝐴 ⊆ ℂ)
36 foimacnv 6154 . . . . . . 7 ((𝐺:(ℝ × ℝ)–onto→ℂ ∧ 𝐴 ⊆ ℂ) → (𝐺 “ (𝐺𝐴)) = 𝐴)
3730, 35, 36sylancr 695 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = 𝐴)
38 simprr 796 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺𝐴) = 𝑡)
3938imaeq2d 5466 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = (𝐺 𝑡))
40 imauni 6504 . . . . . . 7 (𝐺 𝑡) = 𝑤𝑡 (𝐺𝑤)
4139, 40syl6eq 2672 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐺 “ (𝐺𝐴)) = 𝑤𝑡 (𝐺𝑤))
4237, 41eqtr3d 2658 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝐴 = 𝑤𝑡 (𝐺𝑤))
4342imaeq2d 5466 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) = (𝐹 𝑤𝑡 (𝐺𝑤)))
44 imaiun 6503 . . . 4 (𝐹 𝑤𝑡 (𝐺𝑤)) = 𝑤𝑡 (𝐹 “ (𝐺𝑤))
4543, 44syl6eq 2672 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) = 𝑤𝑡 (𝐹 “ (𝐺𝑤)))
46 ssdomg 8001 . . . . . . 7 (𝐾 ∈ TopBases → (𝑡𝐾𝑡𝐾))
4723, 46ax-mp 5 . . . . . 6 (𝑡𝐾𝑡𝐾)
48 omelon 8543 . . . . . . . . . . 11 ω ∈ On
49 nnenom 12779 . . . . . . . . . . . 12 ℕ ≈ ω
5049ensymi 8006 . . . . . . . . . . 11 ω ≈ ℕ
51 isnumi 8772 . . . . . . . . . . 11 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
5248, 50, 51mp2an 708 . . . . . . . . . 10 ℕ ∈ dom card
53 qnnen 14942 . . . . . . . . . . . . . . . . . . . 20 ℚ ≈ ℕ
54 xpen 8123 . . . . . . . . . . . . . . . . . . . 20 ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ))
5553, 53, 54mp2an 708 . . . . . . . . . . . . . . . . . . 19 (ℚ × ℚ) ≈ (ℕ × ℕ)
56 xpnnen 14939 . . . . . . . . . . . . . . . . . . 19 (ℕ × ℕ) ≈ ℕ
5755, 56entri 8010 . . . . . . . . . . . . . . . . . 18 (ℚ × ℚ) ≈ ℕ
5857, 49entr2i 8011 . . . . . . . . . . . . . . . . 17 ω ≈ (ℚ × ℚ)
59 isnumi 8772 . . . . . . . . . . . . . . . . 17 ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card)
6048, 58, 59mp2an 708 . . . . . . . . . . . . . . . 16 (ℚ × ℚ) ∈ dom card
61 ioof 12271 . . . . . . . . . . . . . . . . . 18 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
62 ffun 6048 . . . . . . . . . . . . . . . . . 18 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . 17 Fun (,)
64 qssre 11798 . . . . . . . . . . . . . . . . . . . 20 ℚ ⊆ ℝ
65 ressxr 10083 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℝ*
6664, 65sstri 3612 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℝ*
67 xpss12 5225 . . . . . . . . . . . . . . . . . . 19 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
6866, 66, 67mp2an 708 . . . . . . . . . . . . . . . . . 18 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
6961fdmi 6052 . . . . . . . . . . . . . . . . . 18 dom (,) = (ℝ* × ℝ*)
7068, 69sseqtr4i 3638 . . . . . . . . . . . . . . . . 17 (ℚ × ℚ) ⊆ dom (,)
71 fores 6124 . . . . . . . . . . . . . . . . 17 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)))
7263, 70, 71mp2an 708 . . . . . . . . . . . . . . . 16 ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))
73 fodomnum 8880 . . . . . . . . . . . . . . . 16 ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)))
7460, 72, 73mp2 9 . . . . . . . . . . . . . . 15 ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ)
759, 74eqbrtri 4674 . . . . . . . . . . . . . 14 𝐵 ≼ (ℚ × ℚ)
76 domentr 8015 . . . . . . . . . . . . . 14 ((𝐵 ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ℕ) → 𝐵 ≼ ℕ)
7775, 57, 76mp2an 708 . . . . . . . . . . . . 13 𝐵 ≼ ℕ
7814elexi 3213 . . . . . . . . . . . . . 14 𝐵 ∈ V
7978xpdom1 8059 . . . . . . . . . . . . 13 (𝐵 ≼ ℕ → (𝐵 × 𝐵) ≼ (ℕ × 𝐵))
8077, 79ax-mp 5 . . . . . . . . . . . 12 (𝐵 × 𝐵) ≼ (ℕ × 𝐵)
81 nnex 11026 . . . . . . . . . . . . . 14 ℕ ∈ V
8281xpdom2 8055 . . . . . . . . . . . . 13 (𝐵 ≼ ℕ → (ℕ × 𝐵) ≼ (ℕ × ℕ))
8377, 82ax-mp 5 . . . . . . . . . . . 12 (ℕ × 𝐵) ≼ (ℕ × ℕ)
84 domtr 8009 . . . . . . . . . . . 12 (((𝐵 × 𝐵) ≼ (ℕ × 𝐵) ∧ (ℕ × 𝐵) ≼ (ℕ × ℕ)) → (𝐵 × 𝐵) ≼ (ℕ × ℕ))
8580, 83, 84mp2an 708 . . . . . . . . . . 11 (𝐵 × 𝐵) ≼ (ℕ × ℕ)
86 domentr 8015 . . . . . . . . . . 11 (((𝐵 × 𝐵) ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → (𝐵 × 𝐵) ≼ ℕ)
8785, 56, 86mp2an 708 . . . . . . . . . 10 (𝐵 × 𝐵) ≼ ℕ
88 numdom 8861 . . . . . . . . . 10 ((ℕ ∈ dom card ∧ (𝐵 × 𝐵) ≼ ℕ) → (𝐵 × 𝐵) ∈ dom card)
8952, 87, 88mp2an 708 . . . . . . . . 9 (𝐵 × 𝐵) ∈ dom card
90 eqid 2622 . . . . . . . . . . 11 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
91 vex 3203 . . . . . . . . . . . 12 𝑥 ∈ V
92 vex 3203 . . . . . . . . . . . 12 𝑦 ∈ V
9391, 92xpex 6962 . . . . . . . . . . 11 (𝑥 × 𝑦) ∈ V
9490, 93fnmpt2i 7239 . . . . . . . . . 10 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) Fn (𝐵 × 𝐵)
95 dffn4 6121 . . . . . . . . . 10 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)))
9694, 95mpbi 220 . . . . . . . . 9 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦))
97 fodomnum 8880 . . . . . . . . 9 ((𝐵 × 𝐵) ∈ dom card → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)):(𝐵 × 𝐵)–onto→ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) → ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵)))
9889, 96, 97mp2 9 . . . . . . . 8 ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵)
99 domtr 8009 . . . . . . . 8 ((ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ≼ ℕ) → ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ ℕ)
10098, 87, 99mp2an 708 . . . . . . 7 ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ≼ ℕ
10117, 100eqbrtri 4674 . . . . . 6 𝐾 ≼ ℕ
102 domtr 8009 . . . . . 6 ((𝑡𝐾𝐾 ≼ ℕ) → 𝑡 ≼ ℕ)
10347, 101, 102sylancl 694 . . . . 5 (𝑡𝐾𝑡 ≼ ℕ)
104103ad2antrl 764 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝑡 ≼ ℕ)
10517eleq2i 2693 . . . . . . . . 9 (𝑤𝐾𝑤 ∈ ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)))
10690, 93elrnmpt2 6773 . . . . . . . . 9 (𝑤 ∈ ran (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦))
107105, 106bitri 264 . . . . . . . 8 (𝑤𝐾 ↔ ∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦))
108 elin 3796 . . . . . . . . . . . . 13 (𝑧 ∈ (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)))
109 mbff 23394 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
110109adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:dom 𝐹⟶ℂ)
111 fvco3 6275 . . . . . . . . . . . . . . . . . . 19 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → ((ℜ ∘ 𝐹)‘𝑧) = (ℜ‘(𝐹𝑧)))
112110, 111sylan 488 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((ℜ ∘ 𝐹)‘𝑧) = (ℜ‘(𝐹𝑧)))
113112eleq1d 2686 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ↔ (ℜ‘(𝐹𝑧)) ∈ 𝑥))
114 fvco3 6275 . . . . . . . . . . . . . . . . . . 19 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → ((ℑ ∘ 𝐹)‘𝑧) = (ℑ‘(𝐹𝑧)))
115110, 114sylan 488 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((ℑ ∘ 𝐹)‘𝑧) = (ℑ‘(𝐹𝑧)))
116115eleq1d 2686 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦 ↔ (ℑ‘(𝐹𝑧)) ∈ 𝑦))
117113, 116anbi12d 747 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦) ↔ ((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦)))
118110ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
119 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝐹𝑧) → (ℜ‘𝑤) = (ℜ‘(𝐹𝑧)))
120 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝐹𝑧) → (ℑ‘𝑤) = (ℑ‘(𝐹𝑧)))
121119, 120opeq12d 4410 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐹𝑧) → ⟨(ℜ‘𝑤), (ℑ‘𝑤)⟩ = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
1221cnrecnv 13905 . . . . . . . . . . . . . . . . . . . . 21 𝐺 = (𝑤 ∈ ℂ ↦ ⟨(ℜ‘𝑤), (ℑ‘𝑤)⟩)
123 opex 4932 . . . . . . . . . . . . . . . . . . . . 21 ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ V
124121, 122, 123fvmpt 6282 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑧) ∈ ℂ → (𝐺‘(𝐹𝑧)) = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
125118, 124syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (𝐺‘(𝐹𝑧)) = ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩)
126125eleq1d 2686 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦) ↔ ⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦)))
127118biantrurd 529 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
128126, 127bitr3d 270 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
129 opelxp 5146 . . . . . . . . . . . . . . . . 17 (⟨(ℜ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧))⟩ ∈ (𝑥 × 𝑦) ↔ ((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦))
130 f1ocnv 6149 . . . . . . . . . . . . . . . . . . . 20 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:ℂ–1-1-onto→(ℝ × ℝ))
131 f1ofn 6138 . . . . . . . . . . . . . . . . . . . 20 (𝐺:ℂ–1-1-onto→(ℝ × ℝ) → 𝐺 Fn ℂ)
13228, 130, 131mp2b 10 . . . . . . . . . . . . . . . . . . 19 𝐺 Fn ℂ
133 elpreima 6337 . . . . . . . . . . . . . . . . . . 19 (𝐺 Fn ℂ → ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦))))
134132, 133ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ ((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦)))
135 imacnvcnv 5599 . . . . . . . . . . . . . . . . . . 19 (𝐺 “ (𝑥 × 𝑦)) = (𝐺 “ (𝑥 × 𝑦))
136135eleq2i 2693 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))
137134, 136bitr3i 266 . . . . . . . . . . . . . . . . 17 (((𝐹𝑧) ∈ ℂ ∧ (𝐺‘(𝐹𝑧)) ∈ (𝑥 × 𝑦)) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))
138128, 129, 1373bitr3g 302 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → (((ℜ‘(𝐹𝑧)) ∈ 𝑥 ∧ (ℑ‘(𝐹𝑧)) ∈ 𝑦) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦))))
139117, 138bitrd 268 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧 ∈ dom 𝐹) → ((((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦) ↔ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦))))
140139pm5.32da 673 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
141 ref 13852 . . . . . . . . . . . . . . . . . . 19 ℜ:ℂ⟶ℝ
142 fco 6058 . . . . . . . . . . . . . . . . . . 19 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
143141, 109, 142sylancr 695 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
144 ffn 6045 . . . . . . . . . . . . . . . . . 18 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → (ℜ ∘ 𝐹) Fn dom 𝐹)
145 elpreima 6337 . . . . . . . . . . . . . . . . . 18 ((ℜ ∘ 𝐹) Fn dom 𝐹 → (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥)))
146143, 144, 1453syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥)))
147 imf 13853 . . . . . . . . . . . . . . . . . . 19 ℑ:ℂ⟶ℝ
148 fco 6058 . . . . . . . . . . . . . . . . . . 19 ((ℑ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
149147, 109, 148sylancr 695 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
150 ffn 6045 . . . . . . . . . . . . . . . . . 18 ((ℑ ∘ 𝐹):dom 𝐹⟶ℝ → (ℑ ∘ 𝐹) Fn dom 𝐹)
151 elpreima 6337 . . . . . . . . . . . . . . . . . 18 ((ℑ ∘ 𝐹) Fn dom 𝐹 → (𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
152149, 150, 1513syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦) ↔ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
153146, 152anbi12d 747 . . . . . . . . . . . . . . . 16 (𝐹 ∈ MblFn → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ ((𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥) ∧ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
154 anandi 871 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)) ↔ ((𝑧 ∈ dom 𝐹 ∧ ((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥) ∧ (𝑧 ∈ dom 𝐹 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦)))
155153, 154syl6bbr 278 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
156155adantr 481 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ (𝑧 ∈ dom 𝐹 ∧ (((ℜ ∘ 𝐹)‘𝑧) ∈ 𝑥 ∧ ((ℑ ∘ 𝐹)‘𝑧) ∈ 𝑦))))
157 ffn 6045 . . . . . . . . . . . . . . . 16 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
158 elpreima 6337 . . . . . . . . . . . . . . . 16 (𝐹 Fn dom 𝐹 → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
159109, 157, 1583syl 18 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
160159adantr 481 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ↔ (𝑧 ∈ dom 𝐹 ∧ (𝐹𝑧) ∈ (𝐺 “ (𝑥 × 𝑦)))))
161140, 156, 1603bitr4d 300 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((𝑧 ∈ ((ℜ ∘ 𝐹) “ 𝑥) ∧ 𝑧 ∈ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ 𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦)))))
162108, 161syl5bb 272 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑧 ∈ (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ↔ 𝑧 ∈ (𝐹 “ (𝐺 “ (𝑥 × 𝑦)))))
163162eqrdv 2620 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) = (𝐹 “ (𝐺 “ (𝑥 × 𝑦))))
164 ismbfcn 23398 . . . . . . . . . . . . . . . . . 18 (𝐹:dom 𝐹⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
165109, 164syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ MblFn → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
166165ibi 256 . . . . . . . . . . . . . . . 16 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))
167166simpld 475 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹) ∈ MblFn)
168 ismbf 23397 . . . . . . . . . . . . . . . 16 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
169143, 168syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
170167, 169mpbid 222 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
171170adantr 481 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
172 imassrn 5477 . . . . . . . . . . . . . . 15 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
1739, 172eqsstri 3635 . . . . . . . . . . . . . 14 𝐵 ⊆ ran (,)
174 simprl 794 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
175173, 174sseldi 3601 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ ran (,))
176 rsp 2929 . . . . . . . . . . . . 13 (∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol → (𝑥 ∈ ran (,) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
177171, 175, 176sylc 65 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
178166simprd 479 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹) ∈ MblFn)
179 ismbf 23397 . . . . . . . . . . . . . . . 16 ((ℑ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
180149, 179syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ MblFn → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
181178, 180mpbid 222 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
182181adantr 481 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
183 simprr 796 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
184173, 183sseldi 3601 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ ran (,))
185 rsp 2929 . . . . . . . . . . . . 13 (∀𝑦 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol → (𝑦 ∈ ran (,) → ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol))
186182, 184, 185sylc 65 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol)
187 inmbl 23310 . . . . . . . . . . . 12 ((((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑦) ∈ dom vol) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ∈ dom vol)
188177, 186, 187syl2anc 693 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (((ℜ ∘ 𝐹) “ 𝑥) ∩ ((ℑ ∘ 𝐹) “ 𝑦)) ∈ dom vol)
189163, 188eqeltrrd 2702 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ∈ dom vol)
190 imaeq2 5462 . . . . . . . . . . . 12 (𝑤 = (𝑥 × 𝑦) → (𝐺𝑤) = (𝐺 “ (𝑥 × 𝑦)))
191190imaeq2d 5466 . . . . . . . . . . 11 (𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) = (𝐹 “ (𝐺 “ (𝑥 × 𝑦))))
192191eleq1d 2686 . . . . . . . . . 10 (𝑤 = (𝑥 × 𝑦) → ((𝐹 “ (𝐺𝑤)) ∈ dom vol ↔ (𝐹 “ (𝐺 “ (𝑥 × 𝑦))) ∈ dom vol))
193189, 192syl5ibrcom 237 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ (𝑥𝐵𝑦𝐵)) → (𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
194193rexlimdvva 3038 . . . . . . . 8 (𝐹 ∈ MblFn → (∃𝑥𝐵𝑦𝐵 𝑤 = (𝑥 × 𝑦) → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
195107, 194syl5bi 232 . . . . . . 7 (𝐹 ∈ MblFn → (𝑤𝐾 → (𝐹 “ (𝐺𝑤)) ∈ dom vol))
196195ralrimiv 2965 . . . . . 6 (𝐹 ∈ MblFn → ∀𝑤𝐾 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
197 ssralv 3666 . . . . . 6 (𝑡𝐾 → (∀𝑤𝐾 (𝐹 “ (𝐺𝑤)) ∈ dom vol → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol))
198196, 197mpan9 486 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝑡𝐾) → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
199198ad2ant2r 783 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
200 iunmbl2 23325 . . . 4 ((𝑡 ≼ ℕ ∧ ∀𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol) → 𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
201104, 199, 200syl2anc 693 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → 𝑤𝑡 (𝐹 “ (𝐺𝑤)) ∈ dom vol)
20245, 201eqeltrd 2701 . 2 (((𝐹 ∈ MblFn ∧ 𝐴𝐽) ∧ (𝑡𝐾 ∧ (𝐺𝐴) = 𝑡)) → (𝐹𝐴) ∈ dom vol)
20327, 202exlimddv 1863 1 ((𝐹 ∈ MblFn ∧ 𝐴𝐽) → (𝐹𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574  𝒫 cpw 4158  cop 4183   cuni 4436   ciun 4520   class class class wbr 4653   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  ccom 5118  Oncon0 5723  Fun wfun 5882   Fn wfn 5883  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  cen 7952  cdom 7953  cardccrd 8761  cc 9934  cr 9935  ici 9938   + caddc 9939   · cmul 9941  *cxr 10073  cn 11020  cq 11788  (,)cioo 12175  cre 13837  cim 13838  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  TopBasesctb 20749   Cn ccn 21028   ×t ctx 21363  Homeochmeo 21556  volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388
This theorem is referenced by:  mbfimaopn  23423
  Copyright terms: Public domain W3C validator