MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2 Structured version   Visualization version   GIF version

Theorem infxpenc2 8845
Description: Existence form of infxpenc 8841. A "uniform" or "canonical" version of infxpen 8837, asserting the existence of a single function 𝑔 that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
infxpenc2 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Distinct variable group:   𝑔,𝑏,𝐴

Proof of Theorem infxpenc2
Dummy variables 𝑓 𝑛 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfcom3c 8603 . 2 (𝐴 ∈ On → ∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)))
2 df-2o 7561 . . . . . . . 8 2𝑜 = suc 1𝑜
32oveq2i 6661 . . . . . . 7 (ω ↑𝑜 2𝑜) = (ω ↑𝑜 suc 1𝑜)
4 omelon 8543 . . . . . . . 8 ω ∈ On
5 1on 7567 . . . . . . . 8 1𝑜 ∈ On
6 oesuc 7607 . . . . . . . 8 ((ω ∈ On ∧ 1𝑜 ∈ On) → (ω ↑𝑜 suc 1𝑜) = ((ω ↑𝑜 1𝑜) ·𝑜 ω))
74, 5, 6mp2an 708 . . . . . . 7 (ω ↑𝑜 suc 1𝑜) = ((ω ↑𝑜 1𝑜) ·𝑜 ω)
8 oe1 7624 . . . . . . . . 9 (ω ∈ On → (ω ↑𝑜 1𝑜) = ω)
94, 8ax-mp 5 . . . . . . . 8 (ω ↑𝑜 1𝑜) = ω
109oveq1i 6660 . . . . . . 7 ((ω ↑𝑜 1𝑜) ·𝑜 ω) = (ω ·𝑜 ω)
113, 7, 103eqtri 2648 . . . . . 6 (ω ↑𝑜 2𝑜) = (ω ·𝑜 ω)
12 omxpen 8062 . . . . . . 7 ((ω ∈ On ∧ ω ∈ On) → (ω ·𝑜 ω) ≈ (ω × ω))
134, 4, 12mp2an 708 . . . . . 6 (ω ·𝑜 ω) ≈ (ω × ω)
1411, 13eqbrtri 4674 . . . . 5 (ω ↑𝑜 2𝑜) ≈ (ω × ω)
15 xpomen 8838 . . . . 5 (ω × ω) ≈ ω
1614, 15entri 8010 . . . 4 (ω ↑𝑜 2𝑜) ≈ ω
1716a1i 11 . . 3 (𝐴 ∈ On → (ω ↑𝑜 2𝑜) ≈ ω)
18 bren 7964 . . 3 ((ω ↑𝑜 2𝑜) ≈ ω ↔ ∃𝑓 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω)
1917, 18sylib 208 . 2 (𝐴 ∈ On → ∃𝑓 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω)
20 eeanv 2182 . . 3 (∃𝑛𝑓(∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω) ↔ (∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ ∃𝑓 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω))
21 simpl 473 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω)) → 𝐴 ∈ On)
22 simprl 794 . . . . . . 7 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω)) → ∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)))
23 sseq2 3627 . . . . . . . . 9 (𝑥 = 𝑏 → (ω ⊆ 𝑥 ↔ ω ⊆ 𝑏))
24 oveq2 6658 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (ω ↑𝑜 𝑦) = (ω ↑𝑜 𝑤))
25 f1oeq3 6129 . . . . . . . . . . . 12 ((ω ↑𝑜 𝑦) = (ω ↑𝑜 𝑤) → ((𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦) ↔ (𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑤)))
2624, 25syl 17 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦) ↔ (𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑤)))
2726cbvrexv 3172 . . . . . . . . . 10 (∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦) ↔ ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑤))
28 fveq2 6191 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → (𝑛𝑥) = (𝑛𝑏))
29 f1oeq1 6127 . . . . . . . . . . . . 13 ((𝑛𝑥) = (𝑛𝑏) → ((𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝑛𝑏):𝑥1-1-onto→(ω ↑𝑜 𝑤)))
3028, 29syl 17 . . . . . . . . . . . 12 (𝑥 = 𝑏 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝑛𝑏):𝑥1-1-onto→(ω ↑𝑜 𝑤)))
31 f1oeq2 6128 . . . . . . . . . . . 12 (𝑥 = 𝑏 → ((𝑛𝑏):𝑥1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
3230, 31bitrd 268 . . . . . . . . . . 11 (𝑥 = 𝑏 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
3332rexbidv 3052 . . . . . . . . . 10 (𝑥 = 𝑏 → (∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑤) ↔ ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
3427, 33syl5bb 272 . . . . . . . . 9 (𝑥 = 𝑏 → (∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦) ↔ ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
3523, 34imbi12d 334 . . . . . . . 8 (𝑥 = 𝑏 → ((ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ↔ (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))))
3635cbvralv 3171 . . . . . . 7 (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ↔ ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
3722, 36sylib 208 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω)) → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
38 oveq2 6658 . . . . . . . . 9 (𝑏 = 𝑧 → (ω ↑𝑜 𝑏) = (ω ↑𝑜 𝑧))
3938cbvmptv 4750 . . . . . . . 8 (𝑏 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑏)) = (𝑧 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑧))
4039cnveqi 5297 . . . . . . 7 (𝑏 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑏)) = (𝑧 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑧))
4140fveq1i 6192 . . . . . 6 ((𝑏 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑏))‘ran (𝑛𝑏)) = ((𝑧 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑧))‘ran (𝑛𝑏))
42 2on 7568 . . . . . . . . . 10 2𝑜 ∈ On
43 peano1 7085 . . . . . . . . . . 11 ∅ ∈ ω
44 oen0 7666 . . . . . . . . . . 11 (((ω ∈ On ∧ 2𝑜 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑𝑜 2𝑜))
4543, 44mpan2 707 . . . . . . . . . 10 ((ω ∈ On ∧ 2𝑜 ∈ On) → ∅ ∈ (ω ↑𝑜 2𝑜))
464, 42, 45mp2an 708 . . . . . . . . 9 ∅ ∈ (ω ↑𝑜 2𝑜)
47 eqid 2622 . . . . . . . . . 10 (𝑓 ∘ (( I ↾ ((ω ↑𝑜 2𝑜) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})) = (𝑓 ∘ (( I ↾ ((ω ↑𝑜 2𝑜) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))
4847fveqf1o 6557 . . . . . . . . 9 ((𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω ∧ ∅ ∈ (ω ↑𝑜 2𝑜) ∧ ∅ ∈ ω) → ((𝑓 ∘ (( I ↾ ((ω ↑𝑜 2𝑜) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑𝑜 2𝑜)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑𝑜 2𝑜) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
4946, 43, 48mp3an23 1416 . . . . . . . 8 (𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω → ((𝑓 ∘ (( I ↾ ((ω ↑𝑜 2𝑜) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑𝑜 2𝑜)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑𝑜 2𝑜) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
5049ad2antll 765 . . . . . . 7 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω)) → ((𝑓 ∘ (( I ↾ ((ω ↑𝑜 2𝑜) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑𝑜 2𝑜)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑𝑜 2𝑜) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
5150simpld 475 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω)) → (𝑓 ∘ (( I ↾ ((ω ↑𝑜 2𝑜) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑𝑜 2𝑜)–1-1-onto→ω)
5250simprd 479 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω)) → ((𝑓 ∘ (( I ↾ ((ω ↑𝑜 2𝑜) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅)
5321, 37, 41, 51, 52infxpenc2lem3 8844 . . . . 5 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω)) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
5453ex 450 . . . 4 (𝐴 ∈ On → ((∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
5554exlimdvv 1862 . . 3 (𝐴 ∈ On → (∃𝑛𝑓(∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
5620, 55syl5bir 233 . 2 (𝐴 ∈ On → ((∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1𝑜)(𝑛𝑥):𝑥1-1-onto→(ω ↑𝑜 𝑦)) ∧ ∃𝑓 𝑓:(ω ↑𝑜 2𝑜)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
571, 19, 56mp2and 715 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  cdif 3571  cun 3572  wss 3574  c0 3915  {cpr 4179  cop 4183   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  ccnv 5113  ran crn 5115  cres 5116  ccom 5118  Oncon0 5723  suc csuc 5725  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554   ·𝑜 comu 7558  𝑜 coe 7559  cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559  df-card 8765
This theorem is referenced by:  pwfseq  9486
  Copyright terms: Public domain W3C validator