| Step | Hyp | Ref
| Expression |
| 1 | | ovex 6678 |
. . . . . . . . 9
⊢ (𝐵 ↑𝑚
(ℵ‘𝐴)) ∈
V |
| 2 | 1 | cardid 9369 |
. . . . . . . 8
⊢
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ≈ (𝐵 ↑𝑚
(ℵ‘𝐴)) |
| 3 | 2 | ensymi 8006 |
. . . . . . 7
⊢ (𝐵 ↑𝑚
(ℵ‘𝐴)) ≈
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) |
| 4 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢
(ℵ‘𝐴)
∈ V |
| 5 | 4 | canth2 8113 |
. . . . . . . . . . . . 13
⊢
(ℵ‘𝐴)
≺ 𝒫 (ℵ‘𝐴) |
| 6 | 4 | pw2en 8067 |
. . . . . . . . . . . . 13
⊢ 𝒫
(ℵ‘𝐴) ≈
(2𝑜 ↑𝑚 (ℵ‘𝐴)) |
| 7 | | sdomentr 8094 |
. . . . . . . . . . . . 13
⊢
(((ℵ‘𝐴)
≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2𝑜
↑𝑚 (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2𝑜
↑𝑚 (ℵ‘𝐴))) |
| 8 | 5, 6, 7 | mp2an 708 |
. . . . . . . . . . . 12
⊢
(ℵ‘𝐴)
≺ (2𝑜 ↑𝑚 (ℵ‘𝐴)) |
| 9 | | mapdom1 8125 |
. . . . . . . . . . . 12
⊢
(2𝑜 ≼ 𝐵 → (2𝑜
↑𝑚 (ℵ‘𝐴)) ≼ (𝐵 ↑𝑚
(ℵ‘𝐴))) |
| 10 | | sdomdomtr 8093 |
. . . . . . . . . . . 12
⊢
(((ℵ‘𝐴)
≺ (2𝑜 ↑𝑚 (ℵ‘𝐴)) ∧ (2𝑜
↑𝑚 (ℵ‘𝐴)) ≼ (𝐵 ↑𝑚
(ℵ‘𝐴))) →
(ℵ‘𝐴) ≺
(𝐵
↑𝑚 (ℵ‘𝐴))) |
| 11 | 8, 9, 10 | sylancr 695 |
. . . . . . . . . . 11
⊢
(2𝑜 ≼ 𝐵 → (ℵ‘𝐴) ≺ (𝐵 ↑𝑚
(ℵ‘𝐴))) |
| 12 | | ficard 9387 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ↑𝑚
(ℵ‘𝐴)) ∈ V
→ ((𝐵
↑𝑚 (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ω)) |
| 13 | 1, 12 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ↑𝑚
(ℵ‘𝐴)) ∈
Fin ↔ (card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∈ ω) |
| 14 | | isfinite 8549 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ↑𝑚
(ℵ‘𝐴)) ∈
Fin ↔ (𝐵
↑𝑚 (ℵ‘𝐴)) ≺ ω) |
| 15 | | sdomdom 7983 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ↑𝑚
(ℵ‘𝐴)) ≺
ω → (𝐵
↑𝑚 (ℵ‘𝐴)) ≼ ω) |
| 16 | 14, 15 | sylbi 207 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ↑𝑚
(ℵ‘𝐴)) ∈
Fin → (𝐵
↑𝑚 (ℵ‘𝐴)) ≼ ω) |
| 17 | 13, 16 | sylbir 225 |
. . . . . . . . . . . . . . 15
⊢
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∈ ω → (𝐵 ↑𝑚
(ℵ‘𝐴)) ≼
ω) |
| 18 | | alephgeom 8905 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On ↔ ω
⊆ (ℵ‘𝐴)) |
| 19 | | alephon 8892 |
. . . . . . . . . . . . . . . . 17
⊢
(ℵ‘𝐴)
∈ On |
| 20 | | ssdomg 8001 |
. . . . . . . . . . . . . . . . 17
⊢
((ℵ‘𝐴)
∈ On → (ω ⊆ (ℵ‘𝐴) → ω ≼
(ℵ‘𝐴))) |
| 21 | 19, 20 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (ω
⊆ (ℵ‘𝐴)
→ ω ≼ (ℵ‘𝐴)) |
| 22 | 18, 21 | sylbi 207 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ On → ω
≼ (ℵ‘𝐴)) |
| 23 | | domtr 8009 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ↑𝑚
(ℵ‘𝐴)) ≼
ω ∧ ω ≼ (ℵ‘𝐴)) → (𝐵 ↑𝑚
(ℵ‘𝐴)) ≼
(ℵ‘𝐴)) |
| 24 | 17, 22, 23 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢
(((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → (𝐵 ↑𝑚
(ℵ‘𝐴)) ≼
(ℵ‘𝐴)) |
| 25 | | domnsym 8086 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ↑𝑚
(ℵ‘𝐴)) ≼
(ℵ‘𝐴) →
¬ (ℵ‘𝐴)
≺ (𝐵
↑𝑚 (ℵ‘𝐴))) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → ¬
(ℵ‘𝐴) ≺
(𝐵
↑𝑚 (ℵ‘𝐴))) |
| 27 | 26 | expcom 451 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On →
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∈ ω → ¬
(ℵ‘𝐴) ≺
(𝐵
↑𝑚 (ℵ‘𝐴)))) |
| 28 | 27 | con2d 129 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ On →
((ℵ‘𝐴) ≺
(𝐵
↑𝑚 (ℵ‘𝐴)) → ¬ (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ω)) |
| 29 | | cardidm 8785 |
. . . . . . . . . . . 12
⊢
(card‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) =
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) |
| 30 | | iscard3 8916 |
. . . . . . . . . . . . 13
⊢
((card‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) =
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↔ (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
(ω ∪ ran ℵ)) |
| 31 | | elun 3753 |
. . . . . . . . . . . . 13
⊢
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ)
↔ ((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ran ℵ)) |
| 32 | | df-or 385 |
. . . . . . . . . . . . 13
⊢
(((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ran ℵ) ↔ (¬ (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ω → (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ran ℵ)) |
| 33 | 30, 31, 32 | 3bitri 286 |
. . . . . . . . . . . 12
⊢
((card‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) =
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↔ (¬ (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ω → (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ran ℵ)) |
| 34 | 29, 33 | mpbi 220 |
. . . . . . . . . . 11
⊢ (¬
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∈ ω → (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ran ℵ) |
| 35 | 11, 28, 34 | syl56 36 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On →
(2𝑜 ≼ 𝐵 → (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ran ℵ)) |
| 36 | | alephfnon 8888 |
. . . . . . . . . . 11
⊢ ℵ
Fn On |
| 37 | | fvelrnb 6243 |
. . . . . . . . . . 11
⊢ (ℵ
Fn On → ((card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ∈
ran ℵ ↔ ∃𝑥
∈ On (ℵ‘𝑥)
= (card‘(𝐵
↑𝑚 (ℵ‘𝐴))))) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . . 10
⊢
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) |
| 39 | 35, 38 | syl6ib 241 |
. . . . . . . . 9
⊢ (𝐴 ∈ On →
(2𝑜 ≼ 𝐵 → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))) |
| 40 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈
(cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧‘𝑦))) = (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧‘𝑦))) |
| 41 | 40 | pwcfsdom 9405 |
. . . . . . . . . . 11
⊢
(ℵ‘𝑥)
≺ ((ℵ‘𝑥)
↑𝑚 (cf‘(ℵ‘𝑥))) |
| 42 | | id 22 |
. . . . . . . . . . . 12
⊢
((ℵ‘𝑥) =
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) → (ℵ‘𝑥) = (card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) |
| 43 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢
((ℵ‘𝑥) =
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) → (cf‘(ℵ‘𝑥)) =
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))) |
| 44 | 42, 43 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢
((ℵ‘𝑥) =
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) → ((ℵ‘𝑥) ↑𝑚
(cf‘(ℵ‘𝑥))) = ((card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))
↑𝑚 (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))) |
| 45 | 42, 44 | breq12d 4666 |
. . . . . . . . . . 11
⊢
((ℵ‘𝑥) =
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) → ((ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑𝑚
(cf‘(ℵ‘𝑥))) ↔ (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ≺
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))))) |
| 46 | 41, 45 | mpbii 223 |
. . . . . . . . . 10
⊢
((ℵ‘𝑥) =
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) → (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ≺
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))))) |
| 47 | 46 | rexlimivw 3029 |
. . . . . . . . 9
⊢
(∃𝑥 ∈ On
(ℵ‘𝑥) =
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) → (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ≺
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))))) |
| 48 | 39, 47 | syl6 35 |
. . . . . . . 8
⊢ (𝐴 ∈ On →
(2𝑜 ≼ 𝐵 → (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ≺
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))))) |
| 49 | 48 | imp 445 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧
2𝑜 ≼ 𝐵) → (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ≺
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))))) |
| 50 | | ensdomtr 8096 |
. . . . . . 7
⊢ (((𝐵 ↑𝑚
(ℵ‘𝐴)) ≈
(card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ∧ (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) ≺
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))))) → (𝐵 ↑𝑚
(ℵ‘𝐴)) ≺
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))))) |
| 51 | 3, 49, 50 | sylancr 695 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧
2𝑜 ≼ 𝐵) → (𝐵 ↑𝑚
(ℵ‘𝐴)) ≺
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))))) |
| 52 | | fvex 6201 |
. . . . . . . . 9
⊢
(cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) ∈
V |
| 53 | 52 | enref 7988 |
. . . . . . . 8
⊢
(cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≈ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) |
| 54 | | mapen 8124 |
. . . . . . . 8
⊢
(((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ≈ (𝐵 ↑𝑚
(ℵ‘𝐴)) ∧
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))
→ ((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))) ≈ ((𝐵 ↑𝑚
(ℵ‘𝐴))
↑𝑚 (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))) |
| 55 | 2, 53, 54 | mp2an 708 |
. . . . . . 7
⊢
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))) ≈ ((𝐵 ↑𝑚
(ℵ‘𝐴))
↑𝑚 (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))) |
| 56 | | cfpwsdom.1 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
| 57 | | mapxpen 8126 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧
(ℵ‘𝐴) ∈ On
∧ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) ∈
V) → ((𝐵
↑𝑚 (ℵ‘𝐴)) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))) ≈ (𝐵 ↑𝑚
((ℵ‘𝐴) ×
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))))) |
| 58 | 56, 19, 52, 57 | mp3an 1424 |
. . . . . . 7
⊢ ((𝐵 ↑𝑚
(ℵ‘𝐴))
↑𝑚 (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))
≈ (𝐵
↑𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))) |
| 59 | 55, 58 | entri 8010 |
. . . . . 6
⊢
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))) ≈ (𝐵 ↑𝑚
((ℵ‘𝐴) ×
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))))) |
| 60 | | sdomentr 8094 |
. . . . . 6
⊢ (((𝐵 ↑𝑚
(ℵ‘𝐴)) ≺
((card‘(𝐵
↑𝑚 (ℵ‘𝐴))) ↑𝑚
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))) ∧ ((card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))
↑𝑚 (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))
≈ (𝐵
↑𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))))
→ (𝐵
↑𝑚 (ℵ‘𝐴)) ≺ (𝐵 ↑𝑚
((ℵ‘𝐴) ×
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))))) |
| 61 | 51, 59, 60 | sylancl 694 |
. . . . 5
⊢ ((𝐴 ∈ On ∧
2𝑜 ≼ 𝐵) → (𝐵 ↑𝑚
(ℵ‘𝐴)) ≺
(𝐵
↑𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))))) |
| 62 | 4 | xpdom2 8055 |
. . . . . . . . . 10
⊢
((cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≼ (ℵ‘𝐴)
→ ((ℵ‘𝐴)
× (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))
≼ ((ℵ‘𝐴)
× (ℵ‘𝐴))) |
| 63 | 18 | biimpi 206 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ On → ω
⊆ (ℵ‘𝐴)) |
| 64 | | infxpen 8837 |
. . . . . . . . . . 11
⊢
(((ℵ‘𝐴)
∈ On ∧ ω ⊆ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) |
| 65 | 19, 63, 64 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On →
((ℵ‘𝐴) ×
(ℵ‘𝐴)) ≈
(ℵ‘𝐴)) |
| 66 | | domentr 8015 |
. . . . . . . . . 10
⊢
((((ℵ‘𝐴)
× (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))
≼ ((ℵ‘𝐴)
× (ℵ‘𝐴))
∧ ((ℵ‘𝐴)
× (ℵ‘𝐴))
≈ (ℵ‘𝐴))
→ ((ℵ‘𝐴)
× (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))
≼ (ℵ‘𝐴)) |
| 67 | 62, 65, 66 | syl2an 494 |
. . . . . . . . 9
⊢
(((cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≼ (ℵ‘𝐴)
∧ 𝐴 ∈ On) →
((ℵ‘𝐴) ×
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))) ≼ (ℵ‘𝐴)) |
| 68 | | nsuceq0 5805 |
. . . . . . . . . . 11
⊢ suc
1𝑜 ≠ ∅ |
| 69 | | dom0 8088 |
. . . . . . . . . . 11
⊢ (suc
1𝑜 ≼ ∅ ↔ suc 1𝑜 =
∅) |
| 70 | 68, 69 | nemtbir 2889 |
. . . . . . . . . 10
⊢ ¬
suc 1𝑜 ≼ ∅ |
| 71 | | df-2o 7561 |
. . . . . . . . . . . . . 14
⊢
2𝑜 = suc 1𝑜 |
| 72 | 71 | breq1i 4660 |
. . . . . . . . . . . . 13
⊢
(2𝑜 ≼ 𝐵 ↔ suc 1𝑜 ≼
𝐵) |
| 73 | | breq2 4657 |
. . . . . . . . . . . . 13
⊢ (𝐵 = ∅ → (suc
1𝑜 ≼ 𝐵 ↔ suc 1𝑜 ≼
∅)) |
| 74 | 72, 73 | syl5bb 272 |
. . . . . . . . . . . 12
⊢ (𝐵 = ∅ →
(2𝑜 ≼ 𝐵 ↔ suc 1𝑜 ≼
∅)) |
| 75 | 74 | biimpcd 239 |
. . . . . . . . . . 11
⊢
(2𝑜 ≼ 𝐵 → (𝐵 = ∅ → suc 1𝑜
≼ ∅)) |
| 76 | 75 | adantld 483 |
. . . . . . . . . 10
⊢
(2𝑜 ≼ 𝐵 → ((((ℵ‘𝐴) × (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))) =
∅ ∧ 𝐵 = ∅)
→ suc 1𝑜 ≼ ∅)) |
| 77 | 70, 76 | mtoi 190 |
. . . . . . . . 9
⊢
(2𝑜 ≼ 𝐵 → ¬ (((ℵ‘𝐴) ×
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅)) |
| 78 | | mapdom2 8131 |
. . . . . . . . 9
⊢
((((ℵ‘𝐴)
× (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))
≼ (ℵ‘𝐴)
∧ ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))) =
∅ ∧ 𝐵 = ∅))
→ (𝐵
↑𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))))
≼ (𝐵
↑𝑚 (ℵ‘𝐴))) |
| 79 | 67, 77, 78 | syl2an 494 |
. . . . . . . 8
⊢
((((cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≼ (ℵ‘𝐴)
∧ 𝐴 ∈ On) ∧
2𝑜 ≼ 𝐵) → (𝐵 ↑𝑚
((ℵ‘𝐴) ×
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))))) ≼ (𝐵 ↑𝑚
(ℵ‘𝐴))) |
| 80 | | domnsym 8086 |
. . . . . . . 8
⊢ ((𝐵 ↑𝑚
((ℵ‘𝐴) ×
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))))) ≼ (𝐵 ↑𝑚
(ℵ‘𝐴)) →
¬ (𝐵
↑𝑚 (ℵ‘𝐴)) ≺ (𝐵 ↑𝑚
((ℵ‘𝐴) ×
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴))))))) |
| 81 | 79, 80 | syl 17 |
. . . . . . 7
⊢
((((cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≼ (ℵ‘𝐴)
∧ 𝐴 ∈ On) ∧
2𝑜 ≼ 𝐵) → ¬ (𝐵 ↑𝑚
(ℵ‘𝐴)) ≺
(𝐵
↑𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))))) |
| 82 | 81 | expl 648 |
. . . . . 6
⊢
((cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≼ (ℵ‘𝐴)
→ ((𝐴 ∈ On ∧
2𝑜 ≼ 𝐵) → ¬ (𝐵 ↑𝑚
(ℵ‘𝐴)) ≺
(𝐵
↑𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))))) |
| 83 | 82 | com12 32 |
. . . . 5
⊢ ((𝐴 ∈ On ∧
2𝑜 ≼ 𝐵) → ((cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≼ (ℵ‘𝐴)
→ ¬ (𝐵
↑𝑚 (ℵ‘𝐴)) ≺ (𝐵 ↑𝑚
((ℵ‘𝐴) ×
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))))))) |
| 84 | 61, 83 | mt2d 131 |
. . . 4
⊢ ((𝐴 ∈ On ∧
2𝑜 ≼ 𝐵) → ¬ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≼ (ℵ‘𝐴)) |
| 85 | | domtri 9378 |
. . . . . 6
⊢
(((cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) ∈
V ∧ (ℵ‘𝐴)
∈ V) → ((cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≼ (ℵ‘𝐴)
↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))) |
| 86 | 52, 4, 85 | mp2an 708 |
. . . . 5
⊢
((cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≼ (ℵ‘𝐴)
↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))) |
| 87 | 86 | biimpri 218 |
. . . 4
⊢ (¬
(ℵ‘𝐴) ≺
(cf‘(card‘(𝐵
↑𝑚 (ℵ‘𝐴)))) → (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))
≼ (ℵ‘𝐴)) |
| 88 | 84, 87 | nsyl2 142 |
. . 3
⊢ ((𝐴 ∈ On ∧
2𝑜 ≼ 𝐵) → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))) |
| 89 | 88 | ex 450 |
. 2
⊢ (𝐴 ∈ On →
(2𝑜 ≼ 𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))) |
| 90 | | fndm 5990 |
. . . . . 6
⊢ (ℵ
Fn On → dom ℵ = On) |
| 91 | 36, 90 | ax-mp 5 |
. . . . 5
⊢ dom
ℵ = On |
| 92 | 91 | eleq2i 2693 |
. . . 4
⊢ (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On) |
| 93 | | ndmfv 6218 |
. . . 4
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) =
∅) |
| 94 | 92, 93 | sylnbir 321 |
. . 3
⊢ (¬
𝐴 ∈ On →
(ℵ‘𝐴) =
∅) |
| 95 | | 1n0 7575 |
. . . . . 6
⊢
1𝑜 ≠ ∅ |
| 96 | | 1onn 7719 |
. . . . . . . 8
⊢
1𝑜 ∈ ω |
| 97 | 96 | elexi 3213 |
. . . . . . 7
⊢
1𝑜 ∈ V |
| 98 | 97 | 0sdom 8091 |
. . . . . 6
⊢ (∅
≺ 1𝑜 ↔ 1𝑜 ≠
∅) |
| 99 | 95, 98 | mpbir 221 |
. . . . 5
⊢ ∅
≺ 1𝑜 |
| 100 | | id 22 |
. . . . . 6
⊢
((ℵ‘𝐴) =
∅ → (ℵ‘𝐴) = ∅) |
| 101 | | oveq2 6658 |
. . . . . . . . . . 11
⊢
((ℵ‘𝐴) =
∅ → (𝐵
↑𝑚 (ℵ‘𝐴)) = (𝐵 ↑𝑚
∅)) |
| 102 | | map0e 7895 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ V → (𝐵 ↑𝑚
∅) = 1𝑜) |
| 103 | 56, 102 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐵 ↑𝑚
∅) = 1𝑜 |
| 104 | 101, 103 | syl6eq 2672 |
. . . . . . . . . 10
⊢
((ℵ‘𝐴) =
∅ → (𝐵
↑𝑚 (ℵ‘𝐴)) = 1𝑜) |
| 105 | 104 | fveq2d 6195 |
. . . . . . . . 9
⊢
((ℵ‘𝐴) =
∅ → (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) =
(card‘1𝑜)) |
| 106 | | cardnn 8789 |
. . . . . . . . . 10
⊢
(1𝑜 ∈ ω →
(card‘1𝑜) = 1𝑜) |
| 107 | 96, 106 | ax-mp 5 |
. . . . . . . . 9
⊢
(card‘1𝑜) =
1𝑜 |
| 108 | 105, 107 | syl6eq 2672 |
. . . . . . . 8
⊢
((ℵ‘𝐴) =
∅ → (card‘(𝐵 ↑𝑚
(ℵ‘𝐴))) =
1𝑜) |
| 109 | 108 | fveq2d 6195 |
. . . . . . 7
⊢
((ℵ‘𝐴) =
∅ → (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) =
(cf‘1𝑜)) |
| 110 | | df-1o 7560 |
. . . . . . . . 9
⊢
1𝑜 = suc ∅ |
| 111 | 110 | fveq2i 6194 |
. . . . . . . 8
⊢
(cf‘1𝑜) = (cf‘suc
∅) |
| 112 | | 0elon 5778 |
. . . . . . . . 9
⊢ ∅
∈ On |
| 113 | | cfsuc 9079 |
. . . . . . . . 9
⊢ (∅
∈ On → (cf‘suc ∅) =
1𝑜) |
| 114 | 112, 113 | ax-mp 5 |
. . . . . . . 8
⊢
(cf‘suc ∅) = 1𝑜 |
| 115 | 111, 114 | eqtri 2644 |
. . . . . . 7
⊢
(cf‘1𝑜) =
1𝑜 |
| 116 | 109, 115 | syl6eq 2672 |
. . . . . 6
⊢
((ℵ‘𝐴) =
∅ → (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) =
1𝑜) |
| 117 | 100, 116 | breq12d 4666 |
. . . . 5
⊢
((ℵ‘𝐴) =
∅ → ((ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))) ↔
∅ ≺ 1𝑜)) |
| 118 | 99, 117 | mpbiri 248 |
. . . 4
⊢
((ℵ‘𝐴) =
∅ → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))) |
| 119 | 118 | a1d 25 |
. . 3
⊢
((ℵ‘𝐴) =
∅ → (2𝑜 ≼ 𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))) |
| 120 | 94, 119 | syl 17 |
. 2
⊢ (¬
𝐴 ∈ On →
(2𝑜 ≼ 𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴)))))) |
| 121 | 89, 120 | pm2.61i 176 |
1
⊢
(2𝑜 ≼ 𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑𝑚
(ℵ‘𝐴))))) |