MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlf2 Structured version   Visualization version   GIF version

Theorem evlf2 16858
Description: Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfval.e 𝐸 = (𝐶 evalF 𝐷)
evlfval.c (𝜑𝐶 ∈ Cat)
evlfval.d (𝜑𝐷 ∈ Cat)
evlfval.b 𝐵 = (Base‘𝐶)
evlfval.h 𝐻 = (Hom ‘𝐶)
evlfval.o · = (comp‘𝐷)
evlfval.n 𝑁 = (𝐶 Nat 𝐷)
evlf2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
evlf2.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
evlf2.x (𝜑𝑋𝐵)
evlf2.y (𝜑𝑌𝐵)
evlf2.l 𝐿 = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
Assertion
Ref Expression
evlf2 (𝜑𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
Distinct variable groups:   𝑔,𝑎,𝐶   𝐷,𝑎,𝑔   𝑔,𝐻   𝐹,𝑎,𝑔   𝑁,𝑎,𝑔   𝐺,𝑎,𝑔   𝜑,𝑎,𝑔   · ,𝑎,𝑔   𝑋,𝑎,𝑔   𝑌,𝑎,𝑔
Allowed substitution hints:   𝐵(𝑔,𝑎)   𝐸(𝑔,𝑎)   𝐻(𝑎)   𝐿(𝑔,𝑎)

Proof of Theorem evlf2
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlf2.l . 2 𝐿 = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
2 evlfval.e . . . . 5 𝐸 = (𝐶 evalF 𝐷)
3 evlfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 evlfval.d . . . . 5 (𝜑𝐷 ∈ Cat)
5 evlfval.b . . . . 5 𝐵 = (Base‘𝐶)
6 evlfval.h . . . . 5 𝐻 = (Hom ‘𝐶)
7 evlfval.o . . . . 5 · = (comp‘𝐷)
8 evlfval.n . . . . 5 𝑁 = (𝐶 Nat 𝐷)
92, 3, 4, 5, 6, 7, 8evlfval 16857 . . . 4 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
10 ovex 6678 . . . . . 6 (𝐶 Func 𝐷) ∈ V
11 fvex 6201 . . . . . . 7 (Base‘𝐶) ∈ V
125, 11eqeltri 2697 . . . . . 6 𝐵 ∈ V
1310, 12mpt2ex 7247 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)) ∈ V
1410, 12xpex 6962 . . . . . 6 ((𝐶 Func 𝐷) × 𝐵) ∈ V
1514, 14mpt2ex 7247 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1613, 15op2ndd 7179 . . . 4 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
179, 16syl 17 . . 3 (𝜑 → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
18 fvexd 6203 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) ∈ V)
19 simprl 794 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → 𝑥 = ⟨𝐹, 𝑋⟩)
2019fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) = (1st ‘⟨𝐹, 𝑋⟩))
21 evlf2.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
22 evlf2.x . . . . . . 7 (𝜑𝑋𝐵)
23 op1stg 7180 . . . . . . 7 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2421, 22, 23syl2anc 693 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2524adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2620, 25eqtrd 2656 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) = 𝐹)
27 fvexd 6203 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) ∈ V)
28 simplrr 801 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → 𝑦 = ⟨𝐺, 𝑌⟩)
2928fveq2d 6195 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) = (1st ‘⟨𝐺, 𝑌⟩))
30 evlf2.g . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
31 evlf2.y . . . . . . . 8 (𝜑𝑌𝐵)
32 op1stg 7180 . . . . . . . 8 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3330, 31, 32syl2anc 693 . . . . . . 7 (𝜑 → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3433ad2antrr 762 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3529, 34eqtrd 2656 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) = 𝐺)
36 simplr 792 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑚 = 𝐹)
37 simpr 477 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑛 = 𝐺)
3836, 37oveq12d 6668 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑚𝑁𝑛) = (𝐹𝑁𝐺))
3919ad2antrr 762 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑥 = ⟨𝐹, 𝑋⟩)
4039fveq2d 6195 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑥) = (2nd ‘⟨𝐹, 𝑋⟩))
41 op2ndg 7181 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4221, 22, 41syl2anc 693 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4342ad3antrrr 766 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4440, 43eqtrd 2656 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑥) = 𝑋)
4528adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑦 = ⟨𝐺, 𝑌⟩)
4645fveq2d 6195 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑦) = (2nd ‘⟨𝐺, 𝑌⟩))
47 op2ndg 7181 . . . . . . . . . 10 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4830, 31, 47syl2anc 693 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4948ad3antrrr 766 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
5046, 49eqtrd 2656 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑦) = 𝑌)
5144, 50oveq12d 6668 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((2nd𝑥)𝐻(2nd𝑦)) = (𝑋𝐻𝑌))
5236fveq2d 6195 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (1st𝑚) = (1st𝐹))
5352, 44fveq12d 6197 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑚)‘(2nd𝑥)) = ((1st𝐹)‘𝑋))
5452, 50fveq12d 6197 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑚)‘(2nd𝑦)) = ((1st𝐹)‘𝑌))
5553, 54opeq12d 4410 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ = ⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩)
5637fveq2d 6195 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (1st𝑛) = (1st𝐺))
5756, 50fveq12d 6197 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑛)‘(2nd𝑦)) = ((1st𝐺)‘𝑌))
5855, 57oveq12d 6668 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦))) = (⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌)))
5950fveq2d 6195 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑎‘(2nd𝑦)) = (𝑎𝑌))
6036fveq2d 6195 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑚) = (2nd𝐹))
6160, 44, 50oveq123d 6671 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((2nd𝑥)(2nd𝑚)(2nd𝑦)) = (𝑋(2nd𝐹)𝑌))
6261fveq1d 6193 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔) = ((𝑋(2nd𝐹)𝑌)‘𝑔))
6358, 59, 62oveq123d 6671 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)) = ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔)))
6438, 51, 63mpt2eq123dv 6717 . . . . 5 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6527, 35, 64csbied2 3561 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6618, 26, 65csbied2 3561 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
67 opelxpi 5148 . . . 4 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → ⟨𝐹, 𝑋⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
6821, 22, 67syl2anc 693 . . 3 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
69 opelxpi 5148 . . . 4 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → ⟨𝐺, 𝑌⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
7030, 31, 69syl2anc 693 . . 3 (𝜑 → ⟨𝐺, 𝑌⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
71 ovex 6678 . . . . 5 (𝐹𝑁𝐺) ∈ V
72 ovex 6678 . . . . 5 (𝑋𝐻𝑌) ∈ V
7371, 72mpt2ex 7247 . . . 4 (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))) ∈ V
7473a1i 11 . . 3 (𝜑 → (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))) ∈ V)
7517, 66, 68, 70, 74ovmpt2d 6788 . 2 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
761, 75syl5eq 2668 1 (𝜑𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533  cop 4183   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325   Func cfunc 16514   Nat cnat 16601   evalF cevlf 16849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-evlf 16853
This theorem is referenced by:  evlf2val  16859  evlfcl  16862
  Copyright terms: Public domain W3C validator