| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlf2 | Structured version Visualization version Unicode version | ||
| Description: Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| evlfval.e |
|
| evlfval.c |
|
| evlfval.d |
|
| evlfval.b |
|
| evlfval.h |
|
| evlfval.o |
|
| evlfval.n |
|
| evlf2.f |
|
| evlf2.g |
|
| evlf2.x |
|
| evlf2.y |
|
| evlf2.l |
|
| Ref | Expression |
|---|---|
| evlf2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlf2.l |
. 2
| |
| 2 | evlfval.e |
. . . . 5
| |
| 3 | evlfval.c |
. . . . 5
| |
| 4 | evlfval.d |
. . . . 5
| |
| 5 | evlfval.b |
. . . . 5
| |
| 6 | evlfval.h |
. . . . 5
| |
| 7 | evlfval.o |
. . . . 5
| |
| 8 | evlfval.n |
. . . . 5
| |
| 9 | 2, 3, 4, 5, 6, 7, 8 | evlfval 16857 |
. . . 4
|
| 10 | ovex 6678 |
. . . . . 6
| |
| 11 | fvex 6201 |
. . . . . . 7
| |
| 12 | 5, 11 | eqeltri 2697 |
. . . . . 6
|
| 13 | 10, 12 | mpt2ex 7247 |
. . . . 5
|
| 14 | 10, 12 | xpex 6962 |
. . . . . 6
|
| 15 | 14, 14 | mpt2ex 7247 |
. . . . 5
|
| 16 | 13, 15 | op2ndd 7179 |
. . . 4
|
| 17 | 9, 16 | syl 17 |
. . 3
|
| 18 | fvexd 6203 |
. . . 4
| |
| 19 | simprl 794 |
. . . . . 6
| |
| 20 | 19 | fveq2d 6195 |
. . . . 5
|
| 21 | evlf2.f |
. . . . . . 7
| |
| 22 | evlf2.x |
. . . . . . 7
| |
| 23 | op1stg 7180 |
. . . . . . 7
| |
| 24 | 21, 22, 23 | syl2anc 693 |
. . . . . 6
|
| 25 | 24 | adantr 481 |
. . . . 5
|
| 26 | 20, 25 | eqtrd 2656 |
. . . 4
|
| 27 | fvexd 6203 |
. . . . 5
| |
| 28 | simplrr 801 |
. . . . . . 7
| |
| 29 | 28 | fveq2d 6195 |
. . . . . 6
|
| 30 | evlf2.g |
. . . . . . . 8
| |
| 31 | evlf2.y |
. . . . . . . 8
| |
| 32 | op1stg 7180 |
. . . . . . . 8
| |
| 33 | 30, 31, 32 | syl2anc 693 |
. . . . . . 7
|
| 34 | 33 | ad2antrr 762 |
. . . . . 6
|
| 35 | 29, 34 | eqtrd 2656 |
. . . . 5
|
| 36 | simplr 792 |
. . . . . . 7
| |
| 37 | simpr 477 |
. . . . . . 7
| |
| 38 | 36, 37 | oveq12d 6668 |
. . . . . 6
|
| 39 | 19 | ad2antrr 762 |
. . . . . . . . 9
|
| 40 | 39 | fveq2d 6195 |
. . . . . . . 8
|
| 41 | op2ndg 7181 |
. . . . . . . . . 10
| |
| 42 | 21, 22, 41 | syl2anc 693 |
. . . . . . . . 9
|
| 43 | 42 | ad3antrrr 766 |
. . . . . . . 8
|
| 44 | 40, 43 | eqtrd 2656 |
. . . . . . 7
|
| 45 | 28 | adantr 481 |
. . . . . . . . 9
|
| 46 | 45 | fveq2d 6195 |
. . . . . . . 8
|
| 47 | op2ndg 7181 |
. . . . . . . . . 10
| |
| 48 | 30, 31, 47 | syl2anc 693 |
. . . . . . . . 9
|
| 49 | 48 | ad3antrrr 766 |
. . . . . . . 8
|
| 50 | 46, 49 | eqtrd 2656 |
. . . . . . 7
|
| 51 | 44, 50 | oveq12d 6668 |
. . . . . 6
|
| 52 | 36 | fveq2d 6195 |
. . . . . . . . . 10
|
| 53 | 52, 44 | fveq12d 6197 |
. . . . . . . . 9
|
| 54 | 52, 50 | fveq12d 6197 |
. . . . . . . . 9
|
| 55 | 53, 54 | opeq12d 4410 |
. . . . . . . 8
|
| 56 | 37 | fveq2d 6195 |
. . . . . . . . 9
|
| 57 | 56, 50 | fveq12d 6197 |
. . . . . . . 8
|
| 58 | 55, 57 | oveq12d 6668 |
. . . . . . 7
|
| 59 | 50 | fveq2d 6195 |
. . . . . . 7
|
| 60 | 36 | fveq2d 6195 |
. . . . . . . . 9
|
| 61 | 60, 44, 50 | oveq123d 6671 |
. . . . . . . 8
|
| 62 | 61 | fveq1d 6193 |
. . . . . . 7
|
| 63 | 58, 59, 62 | oveq123d 6671 |
. . . . . 6
|
| 64 | 38, 51, 63 | mpt2eq123dv 6717 |
. . . . 5
|
| 65 | 27, 35, 64 | csbied2 3561 |
. . . 4
|
| 66 | 18, 26, 65 | csbied2 3561 |
. . 3
|
| 67 | opelxpi 5148 |
. . . 4
| |
| 68 | 21, 22, 67 | syl2anc 693 |
. . 3
|
| 69 | opelxpi 5148 |
. . . 4
| |
| 70 | 30, 31, 69 | syl2anc 693 |
. . 3
|
| 71 | ovex 6678 |
. . . . 5
| |
| 72 | ovex 6678 |
. . . . 5
| |
| 73 | 71, 72 | mpt2ex 7247 |
. . . 4
|
| 74 | 73 | a1i 11 |
. . 3
|
| 75 | 17, 66, 68, 70, 74 | ovmpt2d 6788 |
. 2
|
| 76 | 1, 75 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-evlf 16853 |
| This theorem is referenced by: evlf2val 16859 evlfcl 16862 |
| Copyright terms: Public domain | W3C validator |