MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlf2 Structured version   Visualization version   Unicode version

Theorem evlf2 16858
Description: Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfval.e  |-  E  =  ( C evalF  D )
evlfval.c  |-  ( ph  ->  C  e.  Cat )
evlfval.d  |-  ( ph  ->  D  e.  Cat )
evlfval.b  |-  B  =  ( Base `  C
)
evlfval.h  |-  H  =  ( Hom  `  C
)
evlfval.o  |-  .x.  =  (comp `  D )
evlfval.n  |-  N  =  ( C Nat  D )
evlf2.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
evlf2.g  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
evlf2.x  |-  ( ph  ->  X  e.  B )
evlf2.y  |-  ( ph  ->  Y  e.  B )
evlf2.l  |-  L  =  ( <. F ,  X >. ( 2nd `  E
) <. G ,  Y >. )
Assertion
Ref Expression
evlf2  |-  ( ph  ->  L  =  ( a  e.  ( F N G ) ,  g  e.  ( X H Y )  |->  ( ( a `  Y ) ( <. ( ( 1st `  F ) `  X
) ,  ( ( 1st `  F ) `
 Y ) >.  .x.  ( ( 1st `  G
) `  Y )
) ( ( X ( 2nd `  F
) Y ) `  g ) ) ) )
Distinct variable groups:    g, a, C    D, a, g    g, H    F, a, g    N, a, g    G, a, g    ph, a, g    .x. , a,
g    X, a, g    Y, a, g
Allowed substitution hints:    B( g, a)    E( g, a)    H( a)    L( g, a)

Proof of Theorem evlf2
Dummy variables  f  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlf2.l . 2  |-  L  =  ( <. F ,  X >. ( 2nd `  E
) <. G ,  Y >. )
2 evlfval.e . . . . 5  |-  E  =  ( C evalF  D )
3 evlfval.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
4 evlfval.d . . . . 5  |-  ( ph  ->  D  e.  Cat )
5 evlfval.b . . . . 5  |-  B  =  ( Base `  C
)
6 evlfval.h . . . . 5  |-  H  =  ( Hom  `  C
)
7 evlfval.o . . . . 5  |-  .x.  =  (comp `  D )
8 evlfval.n . . . . 5  |-  N  =  ( C Nat  D )
92, 3, 4, 5, 6, 7, 8evlfval 16857 . . . 4  |-  ( ph  ->  E  =  <. (
f  e.  ( C 
Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `
 x ) ) ,  ( x  e.  ( ( C  Func  D )  X.  B ) ,  y  e.  ( ( C  Func  D
)  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
>. )
10 ovex 6678 . . . . . 6  |-  ( C 
Func  D )  e.  _V
11 fvex 6201 . . . . . . 7  |-  ( Base `  C )  e.  _V
125, 11eqeltri 2697 . . . . . 6  |-  B  e. 
_V
1310, 12mpt2ex 7247 . . . . 5  |-  ( f  e.  ( C  Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `  x
) )  e.  _V
1410, 12xpex 6962 . . . . . 6  |-  ( ( C  Func  D )  X.  B )  e.  _V
1514, 14mpt2ex 7247 . . . . 5  |-  ( x  e.  ( ( C 
Func  D )  X.  B
) ,  y  e.  ( ( C  Func  D )  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )  e.  _V
1613, 15op2ndd 7179 . . . 4  |-  ( E  =  <. ( f  e.  ( C  Func  D
) ,  x  e.  B  |->  ( ( 1st `  f ) `  x
) ) ,  ( x  e.  ( ( C  Func  D )  X.  B ) ,  y  e.  ( ( C 
Func  D )  X.  B
)  |->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) )
>.  ->  ( 2nd `  E
)  =  ( x  e.  ( ( C 
Func  D )  X.  B
) ,  y  e.  ( ( C  Func  D )  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) ) )
179, 16syl 17 . . 3  |-  ( ph  ->  ( 2nd `  E
)  =  ( x  e.  ( ( C 
Func  D )  X.  B
) ,  y  e.  ( ( C  Func  D )  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) ) ) )
18 fvexd 6203 . . . 4  |-  ( (
ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. )
)  ->  ( 1st `  x )  e.  _V )
19 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. )
)  ->  x  =  <. F ,  X >. )
2019fveq2d 6195 . . . . 5  |-  ( (
ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. )
)  ->  ( 1st `  x )  =  ( 1st `  <. F ,  X >. ) )
21 evlf2.f . . . . . . 7  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
22 evlf2.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
23 op1stg 7180 . . . . . . 7  |-  ( ( F  e.  ( C 
Func  D )  /\  X  e.  B )  ->  ( 1st `  <. F ,  X >. )  =  F )
2421, 22, 23syl2anc 693 . . . . . 6  |-  ( ph  ->  ( 1st `  <. F ,  X >. )  =  F )
2524adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. )
)  ->  ( 1st ` 
<. F ,  X >. )  =  F )
2620, 25eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. )
)  ->  ( 1st `  x )  =  F )
27 fvexd 6203 . . . . 5  |-  ( ( ( ph  /\  (
x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  ->  ( 1st `  y )  e. 
_V )
28 simplrr 801 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  ->  y  =  <. G ,  Y >. )
2928fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  ->  ( 1st `  y )  =  ( 1st `  <. G ,  Y >. )
)
30 evlf2.g . . . . . . . 8  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
31 evlf2.y . . . . . . . 8  |-  ( ph  ->  Y  e.  B )
32 op1stg 7180 . . . . . . . 8  |-  ( ( G  e.  ( C 
Func  D )  /\  Y  e.  B )  ->  ( 1st `  <. G ,  Y >. )  =  G )
3330, 31, 32syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( 1st `  <. G ,  Y >. )  =  G )
3433ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  ->  ( 1st `  <. G ,  Y >. )  =  G )
3529, 34eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  (
x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  ->  ( 1st `  y )  =  G )
36 simplr 792 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  m  =  F )
37 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  n  =  G )
3836, 37oveq12d 6668 . . . . . 6  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  (
m N n )  =  ( F N G ) )
3919ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  x  =  <. F ,  X >. )
4039fveq2d 6195 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  ( 2nd `  x )  =  ( 2nd `  <. F ,  X >. )
)
41 op2ndg 7181 . . . . . . . . . 10  |-  ( ( F  e.  ( C 
Func  D )  /\  X  e.  B )  ->  ( 2nd `  <. F ,  X >. )  =  X )
4221, 22, 41syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  <. F ,  X >. )  =  X )
4342ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  ( 2nd `  <. F ,  X >. )  =  X )
4440, 43eqtrd 2656 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  ( 2nd `  x )  =  X )
4528adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  y  =  <. G ,  Y >. )
4645fveq2d 6195 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  ( 2nd `  y )  =  ( 2nd `  <. G ,  Y >. )
)
47 op2ndg 7181 . . . . . . . . . 10  |-  ( ( G  e.  ( C 
Func  D )  /\  Y  e.  B )  ->  ( 2nd `  <. G ,  Y >. )  =  Y )
4830, 31, 47syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  <. G ,  Y >. )  =  Y )
4948ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  ( 2nd `  <. G ,  Y >. )  =  Y )
5046, 49eqtrd 2656 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  ( 2nd `  y )  =  Y )
5144, 50oveq12d 6668 . . . . . 6  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  (
( 2nd `  x
) H ( 2nd `  y ) )  =  ( X H Y ) )
5236fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  ( 1st `  m )  =  ( 1st `  F
) )
5352, 44fveq12d 6197 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  (
( 1st `  m
) `  ( 2nd `  x ) )  =  ( ( 1st `  F
) `  X )
)
5452, 50fveq12d 6197 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  (
( 1st `  m
) `  ( 2nd `  y ) )  =  ( ( 1st `  F
) `  Y )
)
5553, 54opeq12d 4410 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  <. (
( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.  =  <. ( ( 1st `  F ) `  X
) ,  ( ( 1st `  F ) `
 Y ) >.
)
5637fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  ( 1st `  n )  =  ( 1st `  G
) )
5756, 50fveq12d 6197 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  (
( 1st `  n
) `  ( 2nd `  y ) )  =  ( ( 1st `  G
) `  Y )
)
5855, 57oveq12d 6668 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  ( <. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.  .x.  ( ( 1st `  n
) `  ( 2nd `  y ) ) )  =  ( <. (
( 1st `  F
) `  X ) ,  ( ( 1st `  F ) `  Y
) >.  .x.  ( ( 1st `  G ) `  Y ) ) )
5950fveq2d 6195 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  (
a `  ( 2nd `  y ) )  =  ( a `  Y
) )
6036fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  ( 2nd `  m )  =  ( 2nd `  F
) )
6160, 44, 50oveq123d 6671 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  (
( 2nd `  x
) ( 2nd `  m
) ( 2nd `  y
) )  =  ( X ( 2nd `  F
) Y ) )
6261fveq1d 6193 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  (
( ( 2nd `  x
) ( 2nd `  m
) ( 2nd `  y
) ) `  g
)  =  ( ( X ( 2nd `  F
) Y ) `  g ) )
6358, 59, 62oveq123d 6671 . . . . . 6  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  (
( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) )  =  ( ( a `  Y
) ( <. (
( 1st `  F
) `  X ) ,  ( ( 1st `  F ) `  Y
) >.  .x.  ( ( 1st `  G ) `  Y ) ) ( ( X ( 2nd `  F ) Y ) `
 g ) ) )
6438, 51, 63mpt2eq123dv 6717 . . . . 5  |-  ( ( ( ( ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  /\  n  =  G )  ->  (
a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x ) H ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.  .x.  ( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) )  =  ( a  e.  ( F N G ) ,  g  e.  ( X H Y )  |->  ( ( a `
 Y ) (
<. ( ( 1st `  F
) `  X ) ,  ( ( 1st `  F ) `  Y
) >.  .x.  ( ( 1st `  G ) `  Y ) ) ( ( X ( 2nd `  F ) Y ) `
 g ) ) ) )
6527, 35, 64csbied2 3561 . . . 4  |-  ( ( ( ph  /\  (
x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. ) )  /\  m  =  F )  ->  [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) )  =  ( a  e.  ( F N G ) ,  g  e.  ( X H Y ) 
|->  ( ( a `  Y ) ( <.
( ( 1st `  F
) `  X ) ,  ( ( 1st `  F ) `  Y
) >.  .x.  ( ( 1st `  G ) `  Y ) ) ( ( X ( 2nd `  F ) Y ) `
 g ) ) ) )
6618, 26, 65csbied2 3561 . . 3  |-  ( (
ph  /\  ( x  =  <. F ,  X >.  /\  y  =  <. G ,  Y >. )
)  ->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m N n ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( ( a `  ( 2nd `  y ) ) ( <. ( ( 1st `  m ) `  ( 2nd `  x ) ) ,  ( ( 1st `  m ) `  ( 2nd `  y ) )
>.  .x.  ( ( 1st `  n ) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m
) ( 2nd `  y
) ) `  g
) ) )  =  ( a  e.  ( F N G ) ,  g  e.  ( X H Y ) 
|->  ( ( a `  Y ) ( <.
( ( 1st `  F
) `  X ) ,  ( ( 1st `  F ) `  Y
) >.  .x.  ( ( 1st `  G ) `  Y ) ) ( ( X ( 2nd `  F ) Y ) `
 g ) ) ) )
67 opelxpi 5148 . . . 4  |-  ( ( F  e.  ( C 
Func  D )  /\  X  e.  B )  ->  <. F ,  X >.  e.  ( ( C  Func  D )  X.  B ) )
6821, 22, 67syl2anc 693 . . 3  |-  ( ph  -> 
<. F ,  X >.  e.  ( ( C  Func  D )  X.  B ) )
69 opelxpi 5148 . . . 4  |-  ( ( G  e.  ( C 
Func  D )  /\  Y  e.  B )  ->  <. G ,  Y >.  e.  ( ( C  Func  D )  X.  B ) )
7030, 31, 69syl2anc 693 . . 3  |-  ( ph  -> 
<. G ,  Y >.  e.  ( ( C  Func  D )  X.  B ) )
71 ovex 6678 . . . . 5  |-  ( F N G )  e. 
_V
72 ovex 6678 . . . . 5  |-  ( X H Y )  e. 
_V
7371, 72mpt2ex 7247 . . . 4  |-  ( a  e.  ( F N G ) ,  g  e.  ( X H Y )  |->  ( ( a `  Y ) ( <. ( ( 1st `  F ) `  X
) ,  ( ( 1st `  F ) `
 Y ) >.  .x.  ( ( 1st `  G
) `  Y )
) ( ( X ( 2nd `  F
) Y ) `  g ) ) )  e.  _V
7473a1i 11 . . 3  |-  ( ph  ->  ( a  e.  ( F N G ) ,  g  e.  ( X H Y ) 
|->  ( ( a `  Y ) ( <.
( ( 1st `  F
) `  X ) ,  ( ( 1st `  F ) `  Y
) >.  .x.  ( ( 1st `  G ) `  Y ) ) ( ( X ( 2nd `  F ) Y ) `
 g ) ) )  e.  _V )
7517, 66, 68, 70, 74ovmpt2d 6788 . 2  |-  ( ph  ->  ( <. F ,  X >. ( 2nd `  E
) <. G ,  Y >. )  =  ( a  e.  ( F N G ) ,  g  e.  ( X H Y )  |->  ( ( a `  Y ) ( <. ( ( 1st `  F ) `  X
) ,  ( ( 1st `  F ) `
 Y ) >.  .x.  ( ( 1st `  G
) `  Y )
) ( ( X ( 2nd `  F
) Y ) `  g ) ) ) )
761, 75syl5eq 2668 1  |-  ( ph  ->  L  =  ( a  e.  ( F N G ) ,  g  e.  ( X H Y )  |->  ( ( a `  Y ) ( <. ( ( 1st `  F ) `  X
) ,  ( ( 1st `  F ) `
 Y ) >.  .x.  ( ( 1st `  G
) `  Y )
) ( ( X ( 2nd `  F
) Y ) `  g ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   <.cop 4183    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325    Func cfunc 16514   Nat cnat 16601   evalF cevlf 16849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-evlf 16853
This theorem is referenced by:  evlf2val  16859  evlfcl  16862
  Copyright terms: Public domain W3C validator