MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomtri2 Structured version   Visualization version   GIF version

Theorem fidomtri2 8820
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
fidomtri2 ((𝐴𝑉𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem fidomtri2
StepHypRef Expression
1 domnsym 8086 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 sdomdom 7983 . . . . . . 7 (𝐴𝐵𝐴𝐵)
32con3i 150 . . . . . 6 𝐴𝐵 → ¬ 𝐴𝐵)
4 fidomtri 8819 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝐴𝑉) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
54ancoms 469 . . . . . 6 ((𝐴𝑉𝐵 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
63, 5syl5ibr 236 . . . . 5 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
7 ensym 8005 . . . . . . . 8 (𝐵𝐴𝐴𝐵)
8 endom 7982 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
97, 8syl 17 . . . . . . 7 (𝐵𝐴𝐴𝐵)
109con3i 150 . . . . . 6 𝐴𝐵 → ¬ 𝐵𝐴)
1110a1i 11 . . . . 5 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐴𝐵 → ¬ 𝐵𝐴))
126, 11jcad 555 . . . 4 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐴𝐵 → (𝐵𝐴 ∧ ¬ 𝐵𝐴)))
13 brsdom 7978 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
1412, 13syl6ibr 242 . . 3 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
1514con1d 139 . 2 ((𝐴𝑉𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
161, 15impbid2 216 1 ((𝐴𝑉𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wcel 1990   class class class wbr 4653  cen 7952  cdom 7953  csdm 7954  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765
This theorem is referenced by:  gchdomtri  9451  gchcda1  9478  frgpcyg  19922
  Copyright terms: Public domain W3C validator