MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdomtri Structured version   Visualization version   GIF version

Theorem gchdomtri 9451
Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 9503. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchdomtri ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))

Proof of Theorem gchdomtri
StepHypRef Expression
1 sdomdom 7983 . . . . 5 (𝐴𝐵𝐴𝐵)
21con3i 150 . . . 4 𝐴𝐵 → ¬ 𝐴𝐵)
3 reldom 7961 . . . . . . 7 Rel ≼
43brrelexi 5158 . . . . . 6 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
543ad2ant3 1084 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
6 fidomtri2 8820 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
75, 6sylan 488 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
82, 7syl5ibr 236 . . 3 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (¬ 𝐴𝐵𝐵𝐴))
98orrd 393 . 2 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
10 simp1 1061 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ GCH)
1110adantr 481 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ GCH)
12 simpr 477 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
13 cdadom3 9010 . . . . . 6 ((𝐴 ∈ GCH ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
1410, 5, 13syl2anc 693 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
1514adantr 481 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
16 cdalepw 9018 . . . . . 6 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
17163adant1 1079 . . . . 5 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
1817adantr 481 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
19 gchor 9449 . . . 4 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 +𝑐 𝐵) ∧ (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)) → (𝐴 ≈ (𝐴 +𝑐 𝐵) ∨ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴))
2011, 12, 15, 18, 19syl22anc 1327 . . 3 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≈ (𝐴 +𝑐 𝐵) ∨ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴))
21 cdadom3 9010 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ GCH) → 𝐵 ≼ (𝐵 +𝑐 𝐴))
225, 10, 21syl2anc 693 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐵 +𝑐 𝐴))
23 cdacomen 9003 . . . . . . . 8 (𝐵 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵)
24 domentr 8015 . . . . . . . 8 ((𝐵 ≼ (𝐵 +𝑐 𝐴) ∧ (𝐵 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵)) → 𝐵 ≼ (𝐴 +𝑐 𝐵))
2522, 23, 24sylancl 694 . . . . . . 7 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ (𝐴 +𝑐 𝐵))
26 domen2 8103 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 𝐵) → (𝐵𝐴𝐵 ≼ (𝐴 +𝑐 𝐵)))
2725, 26syl5ibrcom 237 . . . . . 6 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 ≈ (𝐴 +𝑐 𝐵) → 𝐵𝐴))
2827imp 445 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴 +𝑐 𝐵)) → 𝐵𝐴)
2928olcd 408 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≈ (𝐴 +𝑐 𝐵)) → (𝐴𝐵𝐵𝐴))
30 simpl1 1064 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝐴 ∈ GCH)
31 canth2g 8114 . . . . . . 7 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
32 sdomdom 7983 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
3330, 31, 323syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
34 simpl2 1065 . . . . . . . . 9 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → (𝐴 +𝑐 𝐴) ≈ 𝐴)
35 pwen 8133 . . . . . . . . 9 ((𝐴 +𝑐 𝐴) ≈ 𝐴 → 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴)
3634, 35syl 17 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴)
37 enen2 8101 . . . . . . . . 9 ((𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴 → (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵) ↔ 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴))
3837adantl 482 . . . . . . . 8 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵) ↔ 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴))
3936, 38mpbird 247 . . . . . . 7 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵))
40 endom 7982 . . . . . . 7 (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 𝐵) → 𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵))
41 pwcdadom 9038 . . . . . . 7 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → 𝒫 𝐴𝐵)
4239, 40, 413syl 18 . . . . . 6 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝒫 𝐴𝐵)
43 domtr 8009 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
4433, 42, 43syl2anc 693 . . . . 5 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → 𝐴𝐵)
4544orcd 407 . . . 4 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
4629, 45jaodan 826 . . 3 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ (𝐴 ≈ (𝐴 +𝑐 𝐵) ∨ (𝐴 +𝑐 𝐵) ≈ 𝒫 𝐴)) → (𝐴𝐵𝐵𝐴))
4720, 46syldan 487 . 2 (((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐵𝐵𝐴))
489, 47pm2.61dan 832 1 ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037  wcel 1990  Vcvv 3200  𝒫 cpw 4158   class class class wbr 4653  (class class class)co 6650  cen 7952  cdom 7953  csdm 7954  Fincfn 7955   +𝑐 ccda 8989  GCHcgch 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wdom 8464  df-card 8765  df-cda 8990  df-gch 9443
This theorem is referenced by:  gchaclem  9500
  Copyright terms: Public domain W3C validator