MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimsncls Structured version   Visualization version   Unicode version

Theorem flimsncls 21790
Description: If  A is a limit point of the filter  F, then all the points which specialize  A (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015.)
Assertion
Ref Expression
flimsncls  |-  ( A  e.  ( J  fLim  F )  ->  ( ( cls `  J ) `  { A } )  C_  ( J  fLim  F ) )

Proof of Theorem flimsncls
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 21769 . . . . . 6  |-  ( A  e.  ( J  fLim  F )  ->  J  e.  Top )
2 eqid 2622 . . . . . . . 8  |-  U. J  =  U. J
32flimelbas 21772 . . . . . . 7  |-  ( A  e.  ( J  fLim  F )  ->  A  e.  U. J )
43snssd 4340 . . . . . 6  |-  ( A  e.  ( J  fLim  F )  ->  { A }  C_  U. J )
52clsss3 20863 . . . . . 6  |-  ( ( J  e.  Top  /\  { A }  C_  U. J
)  ->  ( ( cls `  J ) `  { A } )  C_  U. J )
61, 4, 5syl2anc 693 . . . . 5  |-  ( A  e.  ( J  fLim  F )  ->  ( ( cls `  J ) `  { A } )  C_  U. J )
76sselda 3603 . . . 4  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  x  e.  U. J )
8 simpll 790 . . . . . . 7  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  A  e.  ( J  fLim  F
) )
98, 1syl 17 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  J  e.  Top )
10 simprl 794 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  y  e.  J )
111adantr 481 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  J  e.  Top )
124adantr 481 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  { A }  C_  U. J
)
13 simpr 477 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  x  e.  ( ( cls `  J ) `  { A } ) )
1411, 12, 133jca 1242 . . . . . . . . 9  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  -> 
( J  e.  Top  /\ 
{ A }  C_  U. J  /\  x  e.  ( ( cls `  J
) `  { A } ) ) )
152clsndisj 20879 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\ 
{ A }  C_  U. J  /\  x  e.  ( ( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  (
y  i^i  { A } )  =/=  (/) )
16 disjsn 4246 . . . . . . . . . . 11  |-  ( ( y  i^i  { A } )  =  (/)  <->  -.  A  e.  y )
1716necon2abii 2844 . . . . . . . . . 10  |-  ( A  e.  y  <->  ( y  i^i  { A } )  =/=  (/) )
1815, 17sylibr 224 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\ 
{ A }  C_  U. J  /\  x  e.  ( ( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  A  e.  y )
1914, 18sylan 488 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  A  e.  y )
20 opnneip 20923 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  e.  J  /\  A  e.  y )  ->  y  e.  ( ( nei `  J ) `
 { A }
) )
219, 10, 19, 20syl3anc 1326 . . . . . . 7  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  y  e.  ( ( nei `  J
) `  { A } ) )
22 flimnei 21771 . . . . . . 7  |-  ( ( A  e.  ( J 
fLim  F )  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
y  e.  F )
238, 21, 22syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  y  e.  F )
2423expr 643 . . . . 5  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  y  e.  J )  ->  ( x  e.  y  ->  y  e.  F
) )
2524ralrimiva 2966 . . . 4  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) )
262toptopon 20722 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2711, 26sylib 208 . . . . 5  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  J  e.  (TopOn `  U. J ) )
282flimfil 21773 . . . . . 6  |-  ( A  e.  ( J  fLim  F )  ->  F  e.  ( Fil `  U. J
) )
2928adantr 481 . . . . 5  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  F  e.  ( Fil ` 
U. J ) )
30 flimopn 21779 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F  e.  ( Fil `  U. J ) )  -> 
( x  e.  ( J  fLim  F )  <->  ( x  e.  U. J  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
3127, 29, 30syl2anc 693 . . . 4  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  -> 
( x  e.  ( J  fLim  F )  <->  ( x  e.  U. J  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
327, 25, 31mpbir2and 957 . . 3  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  x  e.  ( J  fLim  F ) )
3332ex 450 . 2  |-  ( A  e.  ( J  fLim  F )  ->  ( x  e.  ( ( cls `  J
) `  { A } )  ->  x  e.  ( J  fLim  F
) ) )
3433ssrdv 3609 1  |-  ( A  e.  ( J  fLim  F )  ->  ( ( cls `  J ) `  { A } )  C_  ( J  fLim  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715   clsccl 20822   neicnei 20901   Filcfil 21649    fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-fil 21650  df-flim 21743
This theorem is referenced by:  tsmscls  21941
  Copyright terms: Public domain W3C validator