| Step | Hyp | Ref
| Expression |
| 1 | | elex 3212 |
. 2
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) |
| 2 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑦𝐾 |
| 3 | | nfcsb1v 3549 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐾 |
| 4 | | csbeq1a 3542 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝐾 = ⦋𝑦 / 𝑥⦌𝐾) |
| 5 | 2, 3, 4 | cbvixp 7925 |
. . . . 5
⊢ X𝑥 ∈
𝐼 𝐾 = X𝑦 ∈ 𝐼 ⦋𝑦 / 𝑥⦌𝐾 |
| 6 | 5 | eleq2i 2693 |
. . . 4
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ (𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑦 ∈ 𝐼 ⦋𝑦 / 𝑥⦌𝐾) |
| 7 | | elixp2 7912 |
. . . 4
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑦 ∈ 𝐼 ⦋𝑦 / 𝑥⦌𝐾 ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ (𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)) |
| 8 | | 3anass 1042 |
. . . 4
⊢ (((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ (𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾) ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾))) |
| 9 | 6, 7, 8 | 3bitri 286 |
. . 3
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾))) |
| 10 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐼 ↦ 𝐽) = (𝑥 ∈ 𝐼 ↦ 𝐽) |
| 11 | 10 | fnmpt 6020 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ 𝐾 → (𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼) |
| 12 | 10 | fvmpt2 6291 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ 𝐾) → ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) = 𝐽) |
| 13 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ 𝐾) → 𝐽 ∈ 𝐾) |
| 14 | 12, 13 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ 𝐾) → ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾) |
| 15 | 14 | ralimiaa 2951 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ 𝐾 → ∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾) |
| 16 | 11, 15 | jca 554 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ 𝐾 → ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾)) |
| 17 | | dffn2 6047 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ↔ (𝑥 ∈ 𝐼 ↦ 𝐽):𝐼⟶V) |
| 18 | 10 | fmpt 6381 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ V ↔ (𝑥 ∈ 𝐼 ↦ 𝐽):𝐼⟶V) |
| 19 | 10 | fvmpt2 6291 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ V) → ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) = 𝐽) |
| 20 | 19 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ V) → (((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 ↔ 𝐽 ∈ 𝐾)) |
| 21 | 20 | biimpd 219 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ V) → (((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → 𝐽 ∈ 𝐾)) |
| 22 | 21 | ralimiaa 2951 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ V → ∀𝑥 ∈ 𝐼 (((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → 𝐽 ∈ 𝐾)) |
| 23 | | ralim 2948 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐼 (((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → 𝐽 ∈ 𝐾) → (∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ V → (∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |
| 25 | 18, 24 | sylbir 225 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽):𝐼⟶V → (∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |
| 26 | 17, 25 | sylbi 207 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 → (∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |
| 27 | 26 | imp 445 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾) → ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾) |
| 28 | 16, 27 | impbii 199 |
. . . . 5
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ 𝐾 ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾)) |
| 29 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑦((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 |
| 30 | | nffvmpt1 6199 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) |
| 31 | 30, 3 | nfel 2777 |
. . . . . . 7
⊢
Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾 |
| 32 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) = ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦)) |
| 33 | 32, 4 | eleq12d 2695 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)) |
| 34 | 29, 31, 33 | cbvral 3167 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 ↔ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾) |
| 35 | 34 | anbi2i 730 |
. . . . 5
⊢ (((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾) ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)) |
| 36 | 28, 35 | bitri 264 |
. . . 4
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ 𝐾 ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)) |
| 37 | | mptexg 6484 |
. . . . 5
⊢ (𝐼 ∈ V → (𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V) |
| 38 | 37 | biantrurd 529 |
. . . 4
⊢ (𝐼 ∈ V → (((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾) ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)))) |
| 39 | 36, 38 | syl5rbb 273 |
. . 3
⊢ (𝐼 ∈ V → (((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)) ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |
| 40 | 9, 39 | syl5bb 272 |
. 2
⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |
| 41 | 1, 40 | syl 17 |
1
⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |