| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fucidcl | Structured version Visualization version Unicode version | ||
| Description: The identity natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| fucidcl.q |
|
| fucidcl.n |
|
| fucidcl.x |
|
| fucidcl.f |
|
| Ref | Expression |
|---|---|
| fucidcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucidcl.f |
. . . . . . . 8
| |
| 2 | funcrcl 16523 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 17 |
. . . . . . 7
|
| 4 | 3 | simprd 479 |
. . . . . 6
|
| 5 | eqid 2622 |
. . . . . . 7
| |
| 6 | fucidcl.x |
. . . . . . 7
| |
| 7 | 5, 6 | cidfn 16340 |
. . . . . 6
|
| 8 | 4, 7 | syl 17 |
. . . . 5
|
| 9 | dffn2 6047 |
. . . . 5
| |
| 10 | 8, 9 | sylib 208 |
. . . 4
|
| 11 | eqid 2622 |
. . . . 5
| |
| 12 | relfunc 16522 |
. . . . . 6
| |
| 13 | 1st2ndbr 7217 |
. . . . . 6
| |
| 14 | 12, 1, 13 | sylancr 695 |
. . . . 5
|
| 15 | 11, 5, 14 | funcf1 16526 |
. . . 4
|
| 16 | fcompt 6400 |
. . . 4
| |
| 17 | 10, 15, 16 | syl2anc 693 |
. . 3
|
| 18 | eqid 2622 |
. . . . . 6
| |
| 19 | 4 | adantr 481 |
. . . . . 6
|
| 20 | 15 | ffvelrnda 6359 |
. . . . . 6
|
| 21 | 5, 18, 6, 19, 20 | catidcl 16343 |
. . . . 5
|
| 22 | 21 | ralrimiva 2966 |
. . . 4
|
| 23 | fvex 6201 |
. . . . 5
| |
| 24 | mptelixpg 7945 |
. . . . 5
| |
| 25 | 23, 24 | ax-mp 5 |
. . . 4
|
| 26 | 22, 25 | sylibr 224 |
. . 3
|
| 27 | 17, 26 | eqeltrd 2701 |
. 2
|
| 28 | 4 | adantr 481 |
. . . . . 6
|
| 29 | simpr1 1067 |
. . . . . . 7
| |
| 30 | 29, 20 | syldan 487 |
. . . . . 6
|
| 31 | eqid 2622 |
. . . . . 6
| |
| 32 | 15 | adantr 481 |
. . . . . . 7
|
| 33 | simpr2 1068 |
. . . . . . 7
| |
| 34 | 32, 33 | ffvelrnd 6360 |
. . . . . 6
|
| 35 | eqid 2622 |
. . . . . . . 8
| |
| 36 | 14 | adantr 481 |
. . . . . . . 8
|
| 37 | 11, 35, 18, 36, 29, 33 | funcf2 16528 |
. . . . . . 7
|
| 38 | simpr3 1069 |
. . . . . . 7
| |
| 39 | 37, 38 | ffvelrnd 6360 |
. . . . . 6
|
| 40 | 5, 18, 6, 28, 30, 31, 34, 39 | catlid 16344 |
. . . . 5
|
| 41 | 5, 18, 6, 28, 30, 31, 34, 39 | catrid 16345 |
. . . . 5
|
| 42 | 40, 41 | eqtr4d 2659 |
. . . 4
|
| 43 | fvco3 6275 |
. . . . . 6
| |
| 44 | 32, 33, 43 | syl2anc 693 |
. . . . 5
|
| 45 | 44 | oveq1d 6665 |
. . . 4
|
| 46 | fvco3 6275 |
. . . . . 6
| |
| 47 | 32, 29, 46 | syl2anc 693 |
. . . . 5
|
| 48 | 47 | oveq2d 6666 |
. . . 4
|
| 49 | 42, 45, 48 | 3eqtr4d 2666 |
. . 3
|
| 50 | 49 | ralrimivvva 2972 |
. 2
|
| 51 | fucidcl.n |
. . 3
| |
| 52 | 51, 11, 35, 18, 31, 1, 1 | isnat2 16608 |
. 2
|
| 53 | 27, 50, 52 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-ixp 7909 df-cat 16329 df-cid 16330 df-func 16518 df-nat 16603 |
| This theorem is referenced by: fuclid 16626 fucrid 16627 fuccatid 16629 |
| Copyright terms: Public domain | W3C validator |