![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version |
Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd 7214 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | simpr 477 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | eqeltrrd 2702 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
4 | df-br 4654 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
5 | 3, 4 | sylibr 224 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 〈cop 4183 class class class wbr 4653 Rel wrel 5119 ‘cfv 5888 1st c1st 7166 2nd c2nd 7167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-1st 7168 df-2nd 7169 |
This theorem is referenced by: cofuval 16542 cofu1 16544 cofu2 16546 cofucl 16548 cofuass 16549 cofulid 16550 cofurid 16551 funcres 16556 cofull 16594 cofth 16595 isnat2 16608 fuccocl 16624 fucidcl 16625 fuclid 16626 fucrid 16627 fucass 16628 fucsect 16632 fucinv 16633 invfuc 16634 fuciso 16635 natpropd 16636 fucpropd 16637 homahom 16689 homadm 16690 homacd 16691 homadmcd 16692 catciso 16757 prfval 16839 prfcl 16843 prf1st 16844 prf2nd 16845 1st2ndprf 16846 evlfcllem 16861 evlfcl 16862 curf1cl 16868 curf2cl 16871 curfcl 16872 uncf1 16876 uncf2 16877 curfuncf 16878 uncfcurf 16879 diag1cl 16882 diag2cl 16886 curf2ndf 16887 yon1cl 16903 oyon1cl 16911 yonedalem1 16912 yonedalem21 16913 yonedalem3a 16914 yonedalem4c 16917 yonedalem22 16918 yonedalem3b 16919 yonedalem3 16920 yonedainv 16921 yonffthlem 16922 yoniso 16925 utop2nei 22054 utop3cls 22055 |
Copyright terms: Public domain | W3C validator |