![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hi01 | Structured version Visualization version GIF version |
Description: Inner product with the 0 vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hi01 | ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 27860 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
2 | ax-hvmul0 27867 | . . . . 5 ⊢ (0ℎ ∈ ℋ → (0 ·ℎ 0ℎ) = 0ℎ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (0 ·ℎ 0ℎ) = 0ℎ |
4 | 3 | oveq1i 6660 | . . 3 ⊢ ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0ℎ ·ih 𝐴) |
5 | 0cn 10032 | . . . 4 ⊢ 0 ∈ ℂ | |
6 | ax-his3 27941 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) | |
7 | 5, 1, 6 | mp3an12 1414 | . . 3 ⊢ (𝐴 ∈ ℋ → ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) |
8 | 4, 7 | syl5eqr 2670 | . 2 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) |
9 | hicl 27937 | . . . 4 ⊢ ((0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ) → (0ℎ ·ih 𝐴) ∈ ℂ) | |
10 | 1, 9 | mpan 706 | . . 3 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) ∈ ℂ) |
11 | 10 | mul02d 10234 | . 2 ⊢ (𝐴 ∈ ℋ → (0 · (0ℎ ·ih 𝐴)) = 0) |
12 | 8, 11 | eqtrd 2656 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℂcc 9934 0cc0 9936 · cmul 9941 ℋchil 27776 ·ℎ csm 27778 ·ih csp 27779 0ℎc0v 27781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-hv0cl 27860 ax-hvmul0 27867 ax-hfi 27936 ax-his3 27941 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 |
This theorem is referenced by: hi02 27954 hiidge0 27955 his6 27956 hial0 27959 normgt0 27984 norm0 27985 ocsh 28142 0hmop 28842 adj0 28853 lnopeq0i 28866 leop3 28984 leoprf2 28986 leoprf 28987 idleop 28990 |
Copyright terms: Public domain | W3C validator |